

FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE

CATEDRA CALCULATOARE

PHD THESIS

Object detection based on candidate generation

and classification

Detecţia obiectelor bazată pe generarea şi clasificarea

candidaţilor

 ing. Robert Varga

 Conducător ştiinţific: prof. dr. ing. Sergiu Nedevschi

2017

Contents

List of Tables 5

List of Figures 6

Chapter 1 Introduction 7
1.1 Definitions and context . 7
1.2 Motivation . 8
1.3 Thesis objective . 9
1.4 Thesis structure . 9
1.5 Acknowledgements . 10

Chapter 2 Related works 11
2.1 Object detection overview . 11
2.2 Relevant feature descriptors . 12

2.2.1 Color descriptors and color spaces . 12
2.2.2 Texture descriptors . 13
2.2.3 Shape descriptors . 14
2.2.4 Visual descriptors for object detection 15

2.3 Classifiers for object detection . 18
2.3.1 Decision stumps . 19
2.3.2 Decision trees . 19
2.3.3 K-nearest neighbor classifiers . 20
2.3.4 Bayes classifiers . 21
2.3.5 Linear classifiers . 21
2.3.6 Artificial Neural Networks . 22
2.3.7 Support Vector Machines . 22
2.3.8 Boosted classifiers . 25
2.3.9 Classifier evaluation measures . 27
2.3.10 Classifier evaluation methods . 29

2.4 Region of interest selection and candidate generation methods 30
2.5 Object detection methods . 32
2.6 Pallet detection methods . 34

2

2.7 Pedestrian detection methods . 36
2.8 Stereo matching and reconstruction . 38

Chapter 3 Proposed features and classifiers for object detection 41
3.1 Normalized Pair Differences and other features 41

3.1.1 Normalized Pair Differences . 41
3.1.2 Sparse Local Binary Pattern Histogram 44
3.1.3 Edge density features . 44
3.1.4 Experimental Results . 45
3.1.5 Conclusions . 46

3.2 Boosted ensemble classifiers with decision trees as weak learners 47
3.2.1 Decision tree algorithms . 48
3.2.2 Ensemble classifier algorithms . 51
3.2.3 Experimental results . 52
3.2.4 Conclusions . 53

Chapter 4 Proposed candidate generation methods for fast object detection 55
4.1 Pedestrian candidate generation based on position 55
4.2 Pedestrian candidate generation based on gradient 56
4.3 Bottom-up constructive candidate generation for pallets 58
4.4 Incorporating stereo information for candidate generation 61
4.5 Experimental results . 63
4.6 Conclusions . 64

Chapter 5 Contributions to object detection and classification methods 65
5.1 Automatic image annotation by measuring compactness 65

5.1.1 Compactness definition and interpretation 65
5.1.2 Label transfer for image annotation 67
5.1.3 Algorithm overview . 68
5.1.4 Experimental results . 69
5.1.5 Conclusions . 79

5.2 Detection methods for automated logistics operations 80
5.2.1 Pallet detection and position estimation 81
5.2.2 Methods for treating unloading operations 83
5.2.3 Experimental results . 86
5.2.4 Conclusions . 89

5.3 Pedestrian detection methods . 90
5.3.1 Pedestrian detection using reduced number of scales 90
5.3.2 Pedestrian detection without image resize operations 94
5.3.3 Lazy Feature Extraction (LFE) . 100
5.3.4 Multimodal Multiresolution Filtered Channels (MM-MRFC) 109
5.3.5 Conclusions . 116

3

Chapter 6 Conclusions 117

Bibliography 122

Appendix A Published Papers 132
A.1 In ISI rated international journals . 132
A.2 In ISI indexed conference proceedings . 132
A.3 In IEEE Xplore conference proceedings . 133
A.4 Independent citations . 134

Appendix B Listings of three papers 135

4

List of Tables

3.1 Measuring exposure invariance properties of different descriptor types 45
3.2 Classification benchmark statistics . 53
3.3 Classification benchmark results . 54

4.1 Comparison of different candidate generation schemes. 63

5.1 Comparison using the same feature type . 72
5.2 Compactness based annotation results using different feature types on Corel5k . 72
5.3 Comparison with state-of-the-art Corel5k . 73
5.4 Sample annotations using color+DCT63+SIFT from Corel5k 73
5.5 The influence of parameters on F1 score . 75
5.6 Compactness based annotation results using different feature types on IAPR-TC12 76
5.7 Comparison with state-of-the-art IAPR-TC12 76
5.8 Sample annotations using color+DCT63+SIFT from IAPR-TC12 76
5.9 Compactness based annotation results using different feature types on ESP-game 77
5.10 Comparison with state-of-the-art ESP-game 77
5.11 Sample annotations using SIFT from ESP-game 78
5.12 Composition of datasets acquired from Viano 87
5.13 Detection accuracy for multiple feature configurations 88
5.14 Detection accuracy for decision trees with different depths 88
5.15 Field test results from Viano . 89
5.16 Typical execution times for each processing step 89
5.17 Comparison of execution times . 92
5.18 RoI parameter tests on the training set . 93
5.19 Relevant parameters of the detection algorithm 97
5.20 Area under the DET curve for different parameters on the Cluj Pedestrians dataset 99
5.21 Execution time of different modules . 99
5.22 Execution times and log-average miss rate on Caltech. 108
5.23 Results on Caltech in % after introducing each feature channel 113
5.24 Score results on KITTI (in %) after introducing each feature channel 114
5.25 Comparison with state of the art on the KITTI test set - Average Precision in % 115
5.26 Average precision values on the Tsinghua-Daimler 115

5

List of Figures

2.1 Different visualizations of HOG features . 15
2.2 Principle behind integral image sums . 17
2.3 Pictorial representation of a decision stump 19
2.4 Illustration of the maximum margin found by a linear SVM 23
2.5 Demonstrating the qualities of SIFT features for object detection and recognition. 33
2.6 Standard euro pallet dimensions . 34
2.7 Workflow of the Aggregated Channel Features pedestrian detection system. . . 37
2.8 Projection of a point onto imagers of two stereo cameras 38

3.1 Feature grid of 3 x 16 overlayed on an object (pallet) 43

4.1 The distribution of bounding box centers from the Caltech pedestrian benchmark 56
4.2 Illustrated steps from Algorithm 10. 58
4.3 Visualization of the horizontal guideline detection process. 59
4.4 Stereo-based candidate generation - sample result. 62

5.1 Sample matches and annotation from Corel5k 71
5.2 The influence of bag size - color+DCT63+SIFT 74
5.3 The influence of transfer type . 74
5.4 Precision values for each concept and MAP on the NUS-WIDE dataset 78
5.5 Unloading operation for rack - visualization of processing steps 84
5.6 Unloading operation ground level - output for debugging 85
5.7 Unloading operation for block storage - visualization of processing steps 86
5.8 DET curve on the INRIA test set . 93
5.9 DET cruves on pedestrian benchmarks . 98
5.10 ROC curve and log average miss rate on INRIA 106
5.11 ROC curve and log average miss rate on INRIA 106
5.12 ROC curve and log average miss rate on Caltech-USA 107
5.13 ROC curve and log average miss rate on Caltech-USA 107
5.14 Log-plot of the average number of candidates after each cascade stage 108
5.15 Gathered data points for the mean ratio and fitted polynomials 112
5.16 Caltech comparison with state of the art . 113

6

Chapter 1

Introduction

1.1 Definitions and context
Object detection is a fundamental task in computer vision. Its goal is to determine the

position of different objects in input images or videos. This position is indicated by the bounding
rectangle of the object or by a tight mask that represents the pixels corresponding to the objects.
The difficulty lies in dealing with multiple possible appearances, ignoring irrelevant information
such as noise in the image and having a low execution time.

Object detection often relies on or includes object classification and object recognition.
Object classification aims to determine the correct class of an input object. The classification
problem can be binary and in particular one can look for the presence or the absence of a spe-
cific object class (e.g. faces, people, bottles, etc.). If this problem is solved, a sliding window
approach that checks every valid position can transform the classifier into a detector. This obser-
vation lies at the heart of most modern detection approaches which are essentially fast classifiers
applied to multiple possible hypotheses.

In object recognition specific objects are recognized often from images containing ob-
jects from the same class. A typical example here is face recognition based on biometric features
used to identify a specific user. In this case the system is required to pair a face to an individ-
ual. This task is more specific because it must go beyond simple detection and must perform
identification also.

Candidate generation or region of interest selection refers to the procedure of provid-
ing a smaller input for detection methods than the original search space. Besides the obvious
advantage of needing less time to check each position, it also involves a coarse level filtering of
negative examples and has a benefic effect on classification. For practical systems such a module
is essential in order to ensure fast execution and robust operation.

Object detection can be placed in the context of computer vision and it is related to other
domains such as: image processing, pattern recognition, machine learning, robotics and artifi-
cial intelligence. In image processing important elements are: interest point detection, corner
detection, blob detection, feature descriptors and segmentation. Pattern recognition enables the
recognition of higher level features such as: lines, shapes, textures. Machine learning provides

7

knowledge about choosing, training and evaluating powerful classifiers for the task at hand.
Artificial intelligence develops classifiers that are based on human physiology such as neural
networks.

1.2 Motivation
There is a vast number of applications where object detection is an essential component.

All systems that rely on visual input for reasoning about the environment use object detection in
some form. Since the current state of the art for most objects is well below human capabilities,
the research in the field is active and important.

The automotive industry is focusing on making smarter cars. The improved cars are
equipped with different sensors that enable them to reason about the environment. Information
gathered can help the driver to avoid accidents. In the long term, many automotive manufacturers
aim to develop a fully autonomous car. For such a vision to come true, it is required to have a
permanent understanding of the environment.

Besides popular sensors, such as: laser-scanners, radars and other proximity sensors,
stereo cameras are being built in many cars (Bosch). Stereo cameras are two cameras placed at a
fixed known distance from each other. This configuration enables the estimation of distances and
provides 3D reconstructed points of the visible scene. The sensors can help treat several high
level tasks such as: lane assist, parking assist, pedestrian detection, obstacles detection, hanging
object detection and traffic sign recognition.

Robots and any autonomous entities require object detection to navigate through the en-
vironment or to manipulate elements from it. Automated factories work with robots capable of
assembling cars, inspecting products, transporting goods, inventory management and moving-
line tracking. All of these activities rely on some sort of detection or classification.

Detection and classification are employed in multiple medical imaging applications. De-
tecting cancerous cells, malformations, illnesses, revealing internal structures hidden by the skin
and bones, as well as diagnosing and treating diseases are the main goals. The input can be
obtained from different imaging techniques including: microscopic images, X-ray radiography,
magnetic resonance imaging, medical ultrasonography or ultrasound, endoscopy, elastography,
tactile imaging, thermography, medical photography and nuclear medicine functional imaging
techniques as positron emission tomography.

Video surveillance is useful for the following things: increasing security, monitoring and
recording activities for various purposes, preventing loss of goods, offering facility protection,
enhancing employee safety, deterring vandalism and illegal activities. Persons of interest, license
plates, cars or other objects need to be detected and tracked in such applications.

Systems that are introduced in products are required to be robust to different environmen-
tal conditions. Vision systems must work in scenarios where the lighting changes quickly, where
there is a large variance in illumination conditions, where the illumination conditions are poor
and where light artifacts such as glare are present.

Time constraints are also important in detection systems. Performing in real-time is often

8

a requirement that prohibits the development of complex reasoning algorithms. Engineers must
find solutions that require a small execution time.

1.3 Thesis objective
The goal of this thesis is to analyze, propose, develop and evaluate approaches for object

detection. The main focus is to produce fast and accurate methods by relying on contextual
information, candidate generation and descriptive features.

In order to achieve this goal, we rely on the canonical object detection pipeline. However,
several steps from the pipeline are customized and new approaches are proposed. The methods
developed here should be well-suited for real-world applications. The research should be focused
on solving specific problems in order to have direct applicability.

We propose descriptive features for specific object detection tasks. In real-world appli-
cations feature descriptors must be robust to changing environmental conditions and varying
illumination. Features that are at least partially invariant to such changes are crucial for success-
ful detection. The calculation of features has to be performed for each candidate. So it must be
fast. This however, must not limit their descriptiveness.

To obtain a fast detection a good region of interest or candidate generation module is
required. This step ensures that irrelevant zones from the image are discarded as fast as possible.
More time consuming classification and reasoning can be done on a limited number of difficult
cases.

The chosen goal is difficult in itself and by adding time constraints the problem becomes
even harder. The qualities of the proposed object detection method can be summarized in the
following bullet points:

• robust - provides detections even in suboptimal conditions;

• fast - has a low execution time;

• simple - the algorithms involved are easy to comprehend;

• accurate - the detector has high precision and recall.

1.4 Thesis structure
The present thesis contains six chapters. The introduction has introduced the reader to

the domain of object detection. The next chapter describes related works from the technical
literature. The presentation is grouped according to relevant topics. We progress from low level
features to general object detection and then to complete algorithms for object detection for
specific tasks.

Following the previous structure, the chapters three to five present the original theoretical
and applicative contributions of this thesis. The topics are treated in a bottom-up manner starting

9

from essential building blocks such as features and classifiers in Chapter 3, followed by proposed
candidate generation methods described in Chapter 4. Afterwards, Chapter 5 contains three
specific object detection systems. The last chapter contains conclusions regarding the findings
from the performed research.

1.5 Acknowledgements
I would like to thank my advisor, Prof. Dr. Sergiu Nedevschi, for his guidance and for

the opportunity to work in his research group. I am thankful for the possibility of taking part in
relevant research projects. I also thank my colleagues from Lab D02, Lab 6 and Lab 37 for all
their help and their support. I would like to thank my brother, Tamas, for proofreading the whole
thesis and my family for encouraging me when it was most needed.

10

Chapter 2

Related works

2.1 Object detection overview
Object detection is one of the fundamental machine vision tasks. The research in this

domain has produced numerous approaches. Even though much progress has been made, most
detection systems are far from ready for real applications. An important challenge to overcome
is providing robust results even when the input image is noisy. It is also difficult to produce fast
algorithms that are capable of detection in real-time.

There are several applications where object detection is required. Medical applications
such as detecting cancerous cells are of a tremendous importance. Automatic lane marking
detection and traffic sign detection have been gradually introduced in modern cars. The scope is
to prevent accidental lane changes. Face detection is now applied automatically on photos taken
with most cameras to help tag people in the image.

Insights into object detection help us to understand the way our own brains interpret
visual information. Biologically inspired system architectures have proven to give good results
although at some point it is necessary to break away from imitation. The human visual system
is intrinsically multilayered with each layer corresponding to a certain filter. The objects are
recognized at the highest level.

Face detection is arguably the most researched area in this field. Common applications
include: automatic photo tagging for social media applications and automatic focus for digital
cameras. More specific recognition techniques can be used to identify criminals or to verify
the identity of individuals automatically at passport checkpoints. The difficulty of the problem
lies in covering different face orientations and treating partial occlusion due to glasses, hands or
other objects.

Pedestrian detection is another extremely researched topic in this field. Increasing con-
cern for pedestrian safety in the last year has resulted in the flourishing of pedestrian detection
algorithms. These are essential in Advanced Driving Assistance Systems for preventing acci-
dents involving pedestrians. Car companies are considering incorporating such systems into
their models. For example, Volvo is planning to release cars that come with a pedestrian and
cyclist detection module which will be able to stop the car automatically in case of an imminent

11

collision.
Even though the topic of detecting pedestrians was tackled by many researchers, it re-

mains largely unsolved due to several difficulties: the various visual appearance and varied
clothing of pedestrians, different possible postures and articulations, crowded scenes where par-
tial occlusion prevents detection and the large range of scales. The problem is still open to
research, with systems that meet real-time requirements being especially difficult to develop.

2.2 Relevant feature descriptors
Image features are relevant information extracted from images for a specific task. They

are essential for any high level task such as: detection, recognition and tracking. Features can be
anything from a simple point to a large descriptor defined on a region. Image features are usually
obtained through a process known as feature extraction. The positions where the features are
extracted can be determined by using a feature detector which provides a list of interest points
or by sampling densely from the whole image. The last approach is practiced with great success
in modern machine vision approaches due to advances in computer hardware that makes this
demanding approach possible.

Color or intensity at a position from the image is an example of probably the most simple
and lowest level feature. More complex ones are calculated on an image region such as His-
tograms of Oriented Gradients. When an image region is described by a feature vector, we call
such a vector a ”feature descriptor” of the region. Feature descriptors can be grouped into several
categories. In the following section we provide a taxonomy and exemplify each category with
approaches from the literature. Object detection methods often use custom features designed for
the specific task.

2.2.1 Color descriptors and color spaces
Color can be viewed as the feature of the lowest level since it incorporates only local

information. Even at this level there is a large complexity because of the multitude of available
representation. Multiple color models can be used to represent colors. We enumerate some of
the most common and useful color-spaces.

The standard RGB color model that is implemented in almost all modern display devices
has its limitations including: the luminance and chromatic channels are not separated; it does
not possess a channel that is invariant to illumination changes; does not accurately represent
distances between real world color; the color channels are highly correlated; perceptual non-
uniformity i.e. the distances in RGB do not conform to the perceived difference. Other color
models correct some of these drawbacks.

Hue Saturation Intensity (HSI), Hue Saturation Luminance (HSL) and Hue Saturation
Value (HSV) Joblove and Greenberg (1978) color-spaces separate color and intensity channels.
They are also called phenomenal color-spaces because humans tend to organize colors by hue.
HSI and others can be viewed as a cylindrical coordinate representations of the RGB color-space.

12

All color information is stored in a single channel called hue. This separation is why it is used
in many image editing tools for color picking/selection.

The Lab color space is an opponent color space. The color opponent process is a color
theory that states that human vision is a result of interpreting signals from rod and cone receptors
in an antagonistic manner. The a and b channels represent the two antagonistic color channels
or the signals from the two receptors. It was developed by CIE, the International Commission
on Illumination - Commission Internationale de l’Eclairage - which is an organization devoted
to international cooperation and exchange of information among its member countries on all
matters relating to the science and art of lighting.

Essentially, the opponent channels can be obtained by subtracting two channels from the
RGB model. A derived space called L*a*b* was designed to represent all perceivable colors
because other models such as RGB fail to do so. One other major advantage is that relative
perceptual differences between any two colors in L*a*b* can be approximated by treating each
color as a point in a three-dimensional space and taking the Euclidean distance between them
Jain (1989). Other opponent color models are described and evaluated in van de Sande et al.
(2010) for illumination invariance properties designed specifically for object detection applica-
tions:

[
O1 O2 O3

]t
=
[
(R−G)/

√
2 (R +G− 2B)/

√
6 (R +G+B)/

√
3
]t

(2.1)

Color information is often aggregated to provide better discriminating properties. Such
aggregation can be done globally to produce for example a histogram of colors. This approxi-
mates the probability distribution of the image but loses relative spatial information between the
features. To keep spatial information color descriptors can be extracted from image subregions
of fixed size. The final descriptor is a concatenation of multiple values and thus preserves the
inherent spatial structure of the image. A specific example would be to find the histogram of
colors in all 8x8 regions from the image. An even more general approach is to perform segmen-
tation and retain the mean colors of segments only. For example Selective Search from Uijlings
et al. (2013) generates such descriptors in the process of providing object candidates. These
segmentation-based descriptors are the most difficult and time consuming to calculate.

2.2.2 Texture descriptors

Texture descriptors describe the repetitive patterns present in the image. In the technical
literature there is no formal definition given for what texture is. There are several approaches to
extracting texture descriptors: statistical methods, geometrical methods, model-based methods
and signal processing - see Penatti et al. (2012) for an enumeration.

Statistical methods estimate the statistics of regions. One can consider first order statistics
resulting in a histogram or second order statistics resulting in the co-occurrence histogram. The
last method considers pixel pairs and it is one the most popular texture descriptors.

Bag-of-words quantification is a method burrowed from the natural language processing

13

domain (hence the name) - see Sivic and Zisserman (2009). Descriptor centroids are found via
a clustering method (usually k-means) and all descriptors are replaced by the closest centroid
to it. This is essentially a feature quantization process. Spatial pyramids of histograms of bag
of words from Lazebnik et al. (2006) and Dunlop (2010) can be considered examples from this
category.

Geometrical methods analyze texture by grouping smaller primitive elements. Several ge-
ometrical properties are taken into consideration such as: area, perimeter, aspect ration, thinness
ratio and axis of elongation. This approach works well with artificial textures but has difficulty
in representing natural textures because these are too chaotic and cannot be represented using
primitives.

The idea behind model-based methods is to suppose that the texture is generated by an
underlying model. Such a model would be dark and bright spots arranged in a certain con-
figuration. Local binary patterns from Zhu and Wang (2012) , Census described in Zabih and
Woodfill (1994) and Rank-transform are examples of such non-linear local transformation based
on a texture model.

Texture can also be modeled by applying multiple filters on the image region and concate-
nating the responses. The filters can be either spatial domain of frequency domain. A collection
of Gabor filters with different orientations and scales - see Zheng et al. (2004); the coefficients
from the Fourier transform - see Zhou et al. (2001) and the Discrete Cosine Transform coeffi-
cients - see Ursani et al. (2007) - are a typical examples.

2.2.3 Shape descriptors
Shape descriptors describe the segments of the image. Image segmentation tries to group

pixels together if they belong to the same object. It is a high level task that is easily performed
by humans easily but computer vision algorithms still struggle in this area. One can describe the
whole region of the shape or only the contour of the object.

The region as a whole can be described by several geometric properties such as: region
area; center of mass coordinates; perimeter length; minimal bounding rectangle area; area of
enclosing convex hull; aspect ratio; axis of least inertia; various circularity ratios; eccentricity
and elongation and Euler number - the number of contiguous parts minus the number of holes.

The boundary of an object can be described by local descriptors. In most situations it is
desirable to obtain contour representations that are invariant to translation, rotation, mirroring
and articulation changes. Global descriptors consider the whole boundary to generate feature
values, some approaches include: Elliptic Fourier descriptors from Kuhl and Giardina (1982),
Contour Points Distribution Histogram proposed in Shu and Wu (2011) and invariant moments.

Hierarchical methods build up the object from parts and are learned from multiple exam-
ples. Local shape descriptors are the most descriptive because they associate a descriptor to each
point from the contour. Shape Context from Belongie et al. (2000) describes the distribution of
the other contour points around each point from the contour.

Inner Distance Shape Context proposed in Ling and Jacobs (2007) extends the previous
approach by substituting the distance function with inner distance. This is defined to be the

14

Figure 2.1: Different visualizations of HOG features

distance between two points while traveling only inside the object. Once the descriptors are
extracted, different matching techniques can be applied. These range from simple distances such
as: Euclidean or Manhattan distance to more complex matching costs such as: assignment cost
minimization using dynamic programming; dynamic time warping and earth mover’s distance.
Multiple fast implementations are provided in Varga et al. (2012), and the methods are also tested
on the MPEG7 benchmark.

2.2.4 Visual descriptors for object detection
For practical applications features must go beyond the gray intensity level and color com-

ponents to provide more relevant information about the objects we are trying to detect. Good
features are discriminative (they can help discern between objects and the background), repro-
ducible (they are the same for the same objects even in the presence of noise), possess invariance
properties (position, scale, rotation, affine transformation) and are easy to calculate (needed for
fast detection). In the following we enumerate some of the more important features for general
object detection.

One of the most useful feature types for pedestrian detection is the Histogram of Oriented
Gradients (HOG) proposed by Dalal in the papers Dalal and Triggs (2005); Dalal et al. (2006).
These features are constructed from histograms where each bin corresponds to an orientation and
each pixel contributes to the bin of the gradient angle with a value proportional to the gradient
magnitude. The histograms from cells are grouped in blocks and normalized - see Figure 2.1.
This grouping in blocks preserves spatial distribution. Finally, all responses within the detection
window are concatenated to form the full descriptor that will be fed to the classifier. Many of the
best performing methods use this feature in conjunction with other information. HOG features
have been extended to enable real-time computation of these features in Zhu et al. (2006) using
the integral image optimization trick of Porikli (2005).

Integral images are cummulative sums of the input image in 2D. Their usage transforms
intractable algorithms into simple lookups. Since we consider this a key element in implement-

15

ing fast feature calculation, we provide algorithms descriptions required for cummulative sums.
We describe two different methods for calculating integral images. Both work with images in-
dexed from 0. We present the version where padding is performed after computation. In practice
the output image J can be allocated and indexed with this padding operation in mind from the
start. Algorithm 1 calculates cummulative sums along two directions and Algorithm 2 uses a 2D
recursive update formula. The second algorithm leverages the fact that all previous values to the
left and towards the top are already calculated. Both approaches can be performed in place. In
practice it is often easier to work with a padded version of the integral image, where a stripe of
zeros is added both to the bottom and to the left of the output. This avoids checking for boundary
conditions and simplifies later calculations.

Algorithm 1 Calculate integral image - integral(I)

Input: an input image I
Output: an integral image J , with each entry J(i, j) =

∑i
y=0

∑j
x=0 I(y, x)

1: J = I
2: for i = 0 : I.height− 1 do
3: for j = 1 : I.width− 1 do
4: J(i, j) = J(i, j) + J(i, j − 1)
5: end for
6: end for
7: for i = 1 : I.height− 1 do
8: for j = 0 : I.width− 1 do
9: J(i, j) = J(i, j) + J(i− 1, j)

10: end for
11: end for
12: performPadding(J)
13: return J

Algorithm 2 Calculate integral image - integral(I)

Input: an input image I
Output: an integral image J , with each entry J(i, j) =

∑i
y=0

∑j
x=0 I(y, x)

1: J = I
2: for i = 1 : I.height− 1 do
3: for j = 1 : I.width− 1 do
4: J(i, j) = J(i, j) + J(i− 1, j) + J(i, j − 1)− J(i− 1, j − 1)
5: end for
6: end for
7: performPadding(J)
8: return J

16

Having calculated the integral image, the sum of elements over a rectangular region can
be evaluated using 4 lookups from the integral image. This is illustrated in Figure 2.2. The sum
of the values in the shaded region is S and it is equal to the expression A + C − B − D, the
values are retrieved from the indicated positions from the integral image.

Figure 2.2: Principle behind integral image sums

Haar wavelets were introduced by Viola and Jones in seminal work Viola and Jones
(2001a) for fast detection. These are weighted sums of rectangular areas from within the detec-
tion window. The authors employ integral images for fast calculation of the features, in fact it is
one of the two key ingredients for their real-time method. Even though one can predefine such
features by specifying manually a set of regions to calculate them, it is recommended to generate
the regions randomly. By generating a large number of features one can apply an AdaBoost to
select to most discriminating features automatically. This saves the developer the effort to find
the best features and also ensures that none of the relevant feature configurations are missed if
we generate a large number of configurations.

Integral Channel Features proposed in Dollar et al. (2009a) can be viewed as a gener-
alization of the concept of Haar wavelets. They are defined on a general image channel. This
channel can be an intensity image; a color channel; gradient magnitude; channel corresponding
to a histogram orientation bin etc. First order integral channel features are simply sums of rect-
angular areas from these channels. The optimization with integral images enables extremely fast
calculation of theses features in constant time. (Integral images are cumulative sums along both
the dimensions of the original image intensity). Despite their simplicity, these features can be
used to achieve state-of-the-art results as shown in Dollar et al. (2009b). In Dollár et al. (2010);
Dollár et al. (2014) the authors present a fast detection method using these features and a scale
correction method. The method relies on estimating the energy of the ratio of image channels at
a slightly different scales:

E[f(I, s+ ds)/f(I, s)] = e−λds (2.2)

Other features used to complement the previous ones are presented next. Even though

17

simple color is not helpful for classification, relative color similarity between areas within the
bounding box is a helpful feature. Color self-similarity described in Walk et al. (2010) features
involve calculating histograms that encode second order statistics of colors. Motion cues are very
helpful for detection when they are available. Works in this direction are: Viola et al. (2005a);
Park et al. (2013).

2.3 Classifiers for object detection
Classifiers are explained in the simplest manner in the context of Supervised Learning.

Supervised learning is a Machine Learning framework where learning is performed on a labeled
dataset. In essence, the learning process is treated as showing a child examples from different
classes. Several problems can be formulated as a supervised learning problem.

A labeled dataset consists of multiple examples or instances. The examples from the
dataset are usually characterized by feature vectors. The feature vector resides in a multidimen-
sional vector space X ∈ Rd. Each example has an associated class label that is referred to as the
ground-truth. If C is the set of the possible classes and there are N samples then the labels form
a set Y = {yi ∈ C|i = 1 : N}.

The role of a classifier is to determine the class of an arbitrary input sample. The input
sample is usually represented as a feature vector X . If C is the set of the possible classes then
we can formally define a classifier as a function f : Rd → C that maps each input sample to a
class. In the following we will present binary classifiers for which the number of output classes
is 2, i.e. |C| = 2. Multiclass classifiers can be obtained by training multiple binary classifiers.

A good classifier must possess several properties: generalization property - the ability to
learn the underlying pattern in the provided data and to make accurate predictions on previously
unseen data; compact model - an intuitive and simple underlying model; the ability to make fast
predictions.

The classifier can be viewed as a separation of the feature space in subspaces. The surface
that separates the feature space into sets corresponding to the two classes is called the decision
boundary. The simplest case is a binary decision boundary for a 2 dimensional feature space,
which is a line dividing the plane in two parts.

In the learning framework the dataset is often split into to disjoint sets called the training
and the set. The training set is used for learning purposes, the classifier model is obtained on
this data. The test set is reserved for evaluation.

The learning algorithm for a classifier most often relies on writing the learning prob-
lem as an optimization problem. A cost function or error function is defined, and optimization
techniques are applied to find the minimum.

Two main problems can occur during training phase, they are called high bias (overfitting)
and high variance (underfitting) situations. A high bias classifier learns the training set very
well but fails to generalize and produces a high test set error. The less formal term overfitting
illustrates this by suggesting that classifier finds a decision boundary that is complicated and is
fitted closely to the training data. High variance classifiers fail to learn the training data mostly

18

because its model is too simple (for example, a line cannot always separate points into two
classes).

The Vapnik-Chervonenkis dimension defined in Vapnik (2000) measures the power of a
classifier. It is defined to be cardinality of the largest set of arbitrary points that the classifier can
shatter. This essentially means that the classifier can learn to separate the classes in any possible
configuration. The VC dimension of the perceptron is D + 1, where D is the dimension of the
feature vector. This means, for example, that a line can separate any three points into any two
classes.

Regularization is a technique applied for preventing overfitting and it entails penalizing
the size of the parameters. Powerful classifiers have more parameters and by applying a penalty
that is added to the cost function that is optimized we can enforce the learning algorithm to
find smaller parameters. This is equivalent to eliminating some unnecessary parameters and
thus reducing the discriminative power of the classifier but maintaining all options open in the
beginning.

2.3.1 Decision stumps

Decision stumps can be viewed as the simplest type of classifiers. The decision rule is
based on a condition imposed on a single feature. Regardless of the dimension of the feature
vector a decision can be made in constant time O(1). An example of such a classifier would
be: if feature i is less than 5 return C1 else return C2. Simple classifiers such as this one play a
crucial role in constructing powerful ensemble classifiers. In figure 2.3 the set of all examples is
split into two disjoint subsets based on a single feature (hair length) and a fixed threshold T.

Figure 2.3: Pictorial representation of a decision stump

2.3.2 Decision trees

Decision trees (or classification trees) are a generalization of decision stumps - see Iba
and Langley (1992). To make a decision multiple conditions are verified. This can be regarded
as applying a series of rules. If one envisions the tree nodes containing the sets that correspond

19

to the samples, then we have the following analogy: the root contains the set of all input sam-
ples; each time a rule is applied the set is divided into two child nodes; if the child node contains
instances from a single class it becomes a leaf and the decision is readily made; otherwise the
splitting is continued. Another analogy would be to consider leaves as class decisions, inter-
mediary nodes as rules imposed on certain attributes and branches (tree edges) as the result of
applying the rules. It is useful in practical implementations to limit the height of decision trees
even though the leaf nodes do not contain instances from a single class.

The construction of a decision tree usually follows a top-down approach that is denoted
Top-Down Induction of Decision Trees - see Quinlan (1986). Given a training set there can be
multiple decision trees that correctly classify all instances. In the ID3 method from Quinlan
(1986) it is assumed that the tree with the simplest form possesses the greatest generalization
capability and thus it will work the best on a more general test set. The ID3 is an iterative
construction process where a subsample (window) of the training set is selected and the simplest
tree is found. If the tree correctly classifies all instances then the process finishes, otherwise
the misclassified instances are added to the subset. The ideal attribute on which to perform a
split is determined by maximizing the information gain. Unfortunately, this approach requires
attributes to have only a finite number of possible values and so it is not applicable for unbounded
real values, which is typically the case for image feature descriptors. Other approaches that rely
on information gain include: C4.5 and C5 from Quinlan (1992).

An alternative measure to decide the attribute on which to perform the first split is to
measure the Gini impurity. It is a measure of how often a randomly chosen element from the set
would be incorrectly labeled if it were randomly labeled according to the distribution of labels
in the subset. The CART (Classification and Regresstion Trees) method of Breiman et al. (1984)
relies on Gini.

An important remark about the aforementioned methods is that they aim to find a decision
tree that fully describes the dataset. Also, they aim to minimize the number of decisions to make
in order to classify all the training instances correctly. In practice, recent detection methods
often employ shallow binary decision trees in an ensemble classifiers. In this case other criteria
are more useful for splitting the nodes. The optimal split is chosen to be the one with minimal
weighted classification error.

2.3.3 K-nearest neighbor classifiers
Nearest neighbor classifiers - see Altman (1992) - make a decision about the class of

the input sample by comparing it to the training set samples. The distance to each sample is
evaluated and each training sample is ranked based on proximity. The first K neighbors (that are
closest to the input sample) are then used to determine the output class. A k-NN classifier can
be easily transformed into a regressor by returning the mean of a certain feature value instead of
the class.

It is considered one of the simplest forms of classifiers and often used as baseline for
other results. It is a type of instance-based learning or lazy learning since no model is generated
during training but instead test instances are compared to the training instances at prediction

20

time. Extensions to the standard algorithm have been developed, a typical example would be:
to assign weights to each instance based on the distance; to use more complicated distance
measures or to employ efficient data structures - such as k-d trees - to find the closest neighbors
more quickly.

k-NN has some strong consistency results. As the amount of data approaches infinity,
the algorithm is guaranteed to yield an error rate no worse than twice the Bayes error rate (the
minimum achievable error rate given the distribution of the data) - see Cover and Hart (1967).
For some values of k the method is guaranteed to approach the Bayes error rate.

2.3.4 Bayes classifiers

Bayes classifiers estimate the posterior probability density function of each class given
the input features. It was introduced under a different name into the text retrieval community in
the early 1960s in Russell and Norvig (1995). It can achieve competitive results if the input data
is suitably preprocessed.

The posterior is obtained using the Bayes rule from the prior of each class and the like-
lihood. The likelihood is the conditional probability density function of the features given the
class. During training we choose the classifier that minimizes the probability of misclassification
(or risk). The equation for the posterior (the probability of class k given the features X) is given
by:

p(Ck|X) =
p(X|Ck)p(Ck)

p(X)
(2.3)

The Naive Bayes Classifier assumes that features are independent. This assumption en-
ables the efficient calculation of the posterior as log sums of separate log likelihoods. The result
is that such classifiers are highly scalable, requiring a number of parameters linear in the number
of features. The simplification leads to the following equation:

p(Ck|X) ∝
d∏

i=1

p(Xi|Ck)p(Ck) (2.4)

Choosing the class of an instance at prediction times involves calculating the posteriors
and returning the index of the class with the highest posterior:

k∗ = argmaxkp(Ck, X) (2.5)

2.3.5 Linear classifiers

Weighing each feature with a different number and summing up the terms provides a
score value. Thresholding the resulting score value can be a meaningful classifier. More for-
mally, binary linear classifiers operate using the following decision rule: if θtX > θ0 return C1

21

else return C2. If θ0 is included in the parameter vector, and X is augmented with 1, this simpli-
fies to the dot product condition: ΘtX > 0. Learning can be performed using the variants of the
perceptron algorithm. Overfitting can be avoided by employing regularization which penalizes
large unnecessary coefficients from the weight vector θ.

Even if the examples are not linearly separable in the original feature space, progress
can be made via feature transformation methods. In this case more features are generated such
as powers of the original features. An equivalent and more efficient formulation is the kernel
trick which does not require us to guess the necessary transformation. Instead, we only need to
provide a kernel function which compares two instances.

2.3.6 Artificial Neural Networks

Artificial Neural Networks were proposed in 1943 by Warren McCulloch and Walter
Pitts in McCulloch (1943). The authors proposed to mimic the neural network from the brain by
using a simplified mathematical model they called ”threshold logic”. The network is built from
simple units called the perceptron which have multiple inputs and a single output. The output is
activated when a linear combination of the input surpasses a certain threshold. The power of the
network comes from the cooperation of many interlinked perceptrons. A key development in this
field was the introduction of the backpropagation algorithm by Werbos (1974) which allowed the
training of multilayered networks that were able to learn more complex problems (such as the
xor function).

2.3.7 Support Vector Machines

Support Vector Machines, proposed in Cortes and Vapnik (1995), are one of the most
powerful classifiers. They have three main improvements over the simple linear classifiers.
Firstly, during training the decision boundary with the maximum margin is selected. This ensures
the clear separation of the examples and reduces the classification error when the classes are
separable. Secondly, kernel methods employ kernel functions that enable comparison between
features in a higher dimensional (possibly infinite dimensional) feature space. This eliminates
the need for linear separability which does not always hold. Thirdly, the concept of soft margin
permits some outliers by introducing a slackness term in the target function. In the following we
guide the reader through each of these strengths by deriving the minimization problem that lies
at the heart of SVM.

To illustrate the concept of margin Figure 2.4 is analyzed. Points from two classes are
depicted, where class membership is equivalent to color. The classifier needs to separate the two
classes by defining a separating line (or hyperplane in the general multidimensional case). This
is defined by a linear equation:

wTX = b (2.6)

The weight vector w is the normal to the line and b is the intercept term, it is equal to

22

the signed distance of the line from the origin. The margin is defined as the distance between
the closest two points from separate classes along the direction perpendicular to the line. More
technically, the margin can be defined using a dot product (projection along the normal vector):

m = min
i,j,yi>0,yj<0

wT · (Xi −Xj)/||w||. (2.7)

The points lying on the edge of the margin are called support vectors. The goal of the
classifier is to have a large margin since this ensures a robust classification. There is a ”neu-
tral” zone is where classification is ambiguous. However, for the training set all examples are
cleanly separated and are as far from the decision boundary as possible. Having a large margin
is equivalent to the previous condition.

Figure 2.4: Illustration of the maximum margin found by a linear SVM

In order to have a large margin for the classifier, we need to ensure that all positive points
are classified as larger than 1 and all negative points are classified as smaller than -1. The
convention of choosing ±1 simplifies calculations and does not affect the size of the margin as
we shall see later. The conditions can be formulated compactly in the following equation:

yi(w
TXi − b) ≥ 1 (2.8)

where Xi is the i-th feature vector, w is the linear weight vector needed to be determined,
b is the bias term (a scalar constant) and yi is the class label. Class labels are either +1 or -1.
In this configuration the size of the margin is 2/||w||. The problem of having the largest margin
can be formulated as a minimization problem:

23

Minimize ||w|| with respect to w and b (i.e. maximize the margin 2/||w||) subject to
constraints from 2.8.

An equivalent form considers the square of the norm, thus transforming the problem into
a quadratic optimization problem. Using Karush-Kuhn-Tucker multipliers, which generalize
Lagrange multipliers, to incorporate the constraints into a single optimization function, we can
formulate the following form (primal form):

w∗ = arg min
w,b

max
α≥0

(
1

2
wTw +

∑

i

αi(yi(w
TXi − b)− 1)

)
(2.9)

The dual form can be obtained by writing the weight vector as a linear combination of
the training instances w =

∑
i αiXiyi. This is implied by the stationary Karush-Kuhn-Tucker

condition. After substitution and arrangements we have:

L(α) =
∑

i

αi −
1

2

∑

i,j

αiαjyiyjX
T
i Xj (2.10)

subject to constraints ai ≥ 0 and
∑

i αiyi = 0.
In 1995, Corinna Cortes and Vladimir N. Vapnik introduced the soft-margin formulation

for SVMs. They have received the 2008 ACM Paris Kanellakis Award for their contribution. The
soft margin formulation allows for a few misclassified examples by introducing slack variables ξi
and penalizing such mistakes. The tolerance to such outliers is controlled by the cost parameters
C in a linear fashion. In this case the optimization problem has the following form:

w∗ = arg min
w,ξ,b

(
1

2
wTw + C

∑

i

ξi

)
(2.11)

subject to constraints:

yi(w
TXi − b) ≥ 1− ξi (2.12)

Note that the constraints have been modified to allow for certain instances to have a
classification score that violates the original hard margin constraints. In such cases ξi > 0. If
we penalize mistakes by letting C → ∞ then this forces all ξi = 0 and we obtain the original
optimization problem with hard margin. Choosing C = 0 does not make sense, since it implies
that ξi can take on any value to satisfy the constraints and no progress is made.

The dual form of the previous problem can be stated as:

L(α) =
∑

i

αi −
1

2

∑

i,j

αiαjyiyjX
T
i Xj (2.13)

subject to constraints 0 ≤ ai ≤ C and
∑

i αiyi = 0. Because of the linear penalty
function, the slack variables vanish and only the constraints on the αi change.

The last issue that needs to be addressed is linear separability. What happens if the

24

training data cannot be separated with a simple line? The normal approach would be to extend
the feature space by forming other features. A typical example would include higher order
polynomials of the features. As this can lead to a large number of features and possibly does not
solve the problem, a better solution is needed. Kernel methods resolve this by changing the dot
product from the dual form to a general kernel function:

Lkernel(α) =
∑

i

αi −
1

2

∑

i,j

αiαjyiyjk(Xi, Xj) (2.14)

This avoids the introduction of higher order features and essentially makes the trip to the
other feature space and back without requiring the explicit transformation. Also, this opens the
possibility of having an infinite dimensional feature space if we use the Gaussian kernel (Radial
Basis Function):

k(Xi, Xj) = exp(−γ||Xi −Xj||2) (2.15)

We end the description by providing a short list of implementations for SVM. Probably
the most used and recommended is the LIBSVM by Chang and Lin (2011) free library available
in multiple programming languages. SVM is included also in Matlab, Weka, SVMlight and other
environments/libraries. The most common optimization technique used to solve the quadratic
programming problem is the Sequential Minimal Optimization algorithm (SMO) shown in Platt
et al. (1999). The algorithm breaks this problem into a series of the smallest possible sub-
problems, which are then solved analytically.

2.3.8 Boosted classifiers
Ensemble classifiers discussed in Schapire (1990) rely on combining multiple simple

classifiers to obtain a robust decision. The simple classifiers are called weak learners and are
typically fast and cheap to evaluate. The outputs of the weak learners are combined to make
a final classification. AdaBoost is an example of a training method that helps to find multiple
weak learners so that their combination results in a low classification error.

AdaBoost stands for Adaptive Boosting. It is a training algorithm for ensemble classifiers.
It was shown by Feund and Shapire in Schapire (1990) that several weak learners can be just as
powerful as a strong classifier when combined together. The authors have received the Godel
Prize in 2003 for their work, indicating the importance of their discovery.

In the following we provide an intuitive description which will be followed by a formal
presentation of the theory and pseudocode. Intuitively, AdaBoost weighs each training example
and changes the distribution of these weights according to which example was successfully
classified. The error measure will be the weighted training error which takes into account these
value. If an example was misclassified, its weight will be increased in the next stage to guide the
classifier into learning that specific example.

We now turn to a more formal description. Let the combined score of the ensemble
classifier at stage T be the linear combination of the scores of the weak learners:

25

HT (x) =
T∑

t=1

αtht(x) (2.16)

Each weak learner can return the values +1 or −1. Our goal is to learn the classifiers ht
and to find the coefficients αt that minimize the error function:

Et =
N∑

i=1

e−yiHt(xi) (2.17)

This exponential loss function has a high value in the cases of mismatches between the
sign of the prediction given by Ht(xi) and the true class label yi. By adopting the weighting
function w(t)

i to be 1 if t = 1 and e−yiHt−1(xi) for other values of t the error can be expressed as:

Et =
N∑

i=1

e−yiHt−1(xi)e−yiαtht(xi) =
N∑

i=1

w
(t)
i e
−yiαtht(xi) (2.18)

which results from the original definition of the error and is obtained by cutting off the
sum from the expression of Ht at t − 1 and separating the first part which is equal to w(t)

i . The
error can be rearranged to obtain:

Et =
N∑

i=1

w
(t)
i e
−αt +

∑

y(i)6=ht(xi)
w

(t)
i (eαt − e−αt) (2.19)

We wish to choose the best weak classifier at step t to minimize this error. The expression
attains the minimal value when the second term is minimal since the first term is independent of
our choice for ht. The term eαt − e−αt is dependent only on αt and not on ht. So the optimal
weak classifier at step t must minimize the weighted training error

∑
y(i) 6=ht(xi)w

(t)
i . We now

turn to determining the weight coefficient αt. For this we use another form for the error function
where we group incorrect and correct predictions in two terms:

Et =
∑

y(i) 6=ht(xi)
w

(t)
i e

αt +
∑

y(i)=ht(xi)

w
(t)
i e
−αt (2.20)

The minimum can be found analytically by taking the partial derivative and equating it
with 0:

∂E

∂αt
=

∑

y(i) 6=ht(xi)
w

(t)
i e

αt −
∑

y(i)=ht(xi)

w
(t)
i e
−αt = εte

αt − (1− εt)e−αt = 0 (2.21)

Solving for αt by multiplying by eαt and taking the logarithm we obtain:

26

αt =
1

2
ln

1− εt
εt

(2.22)

where εt is the weighted training error:
∑

yi 6=ht(xi)w
(t)
i . So at each iteration we pick

the classifier with the lowest weighted training error, calculate its weight αt and add it to the
ensemble classifier.

2.3.9 Classifier evaluation measures

We define a dataset as a set containing N samples, each sample consists of a feature
vector Xi, which is vector from a D dimensional real vector space and sample label yi which is
from the set of admissible class labels C. The classifier that is tested is denoted by f(·).

In the following definitions we use the Iverson bracket convention for summations which
entails that logical expressions surrounded by [expr] evaluate to 1 if true and to 0 if false. This
enables the succinct and exact representation of the sums. The training error is defined as (Note,
all sums are taken over the all the possible values of i):

E =
1

N

∑

i

[f(Xi) 6= yi] (2.23)

The accuracy is its complementary measure:

A =
1

N

∑

i

[f(Xi) = yi] = 1− E (2.24)

For cases when the distribution of the instances in the classes is skewed, the standard
error measure does not provide a meaningful measure of the error. For example, on a dataset
with instances 10000 instances from c1 and 10 instances from c2 a classifier that always returns
c1 achieves a low error rate of 10

10010
≈ 1e − 3. More relevant measures in this case are the

weighted error rate, precision and recall.
The weighted training error considers weights for each training instance. Classes with

less instances can be given larger weights, or difficult examples can also receive a larger impor-
tance. If the weights are stored in a vector w, the weighted error has the following form:

Ew =
1∑
i(wi)

∑

i

[f(Xi) 6= yi]wi (2.25)

Precision for class c is defined as the percentage of correctly classified instances from the
class c:

Pc =

∑
i[f(Xi) = yi][f(Xi) = c]∑

i[f(Xi) = c]
(2.26)

This is the same as the number of true positives divided by the sum of true positives and false
positives.

27

Recall for class c is defined as the percentage of correctly recalled instances from the
class c:

Rc =

∑
i[f(Xi) = yi][f(Xi) = c]∑

i[yi = c]
(2.27)

This is the same as the number of true positives divided by the sum of true positives and false
negatives.

It can be easily observed that good performance is ensured by both a high recall and
precision. In practice, there is a trade-off between these two values. Opting for a more precise
classifier often results in missing some instances. Requiring the recall of as many examples as
possible will likely lead to classification mistakes.

The F1 measure or score is the harmonic mean of the precision and recall. It is a special
case of the general Fβ measure:

Fβ = (1 + β2)
Pc ·Rc

β2Pc +Rc

(2.28)

It was derived so that Fβ would measure ”the effectiveness of retrieval with respect to a
user who attaches β times as much importance to recall as precision” - from Rijsbergen (1979).
It is useful because it provides a single scalar value for given precision and recall values. This
simplifies the comparison and ranking of classifiers.

Cohen’s kappa coefficient is a statistical measure that can also be applied for evaluating
classifier performance. It measures the agreement of the ground-truth labeling and that of the
classifier. It is generally thought to be a more robust measure than simple percent agreement
calculation since κ takes into account the agreement occurring by chance. The value of the
coefficient is given by:

κ =
Q(a)−Q(e)

1−Q(e)
(2.29)

where Q(a) is the probability of agreement and is equal to the accuracy value, and Q(e)
is the probability of chance agreement. For the case of a classifier and ground-truth data it is
given by:

Q(e) =
1

N2

∑

c

∑

i

[f(Xi) = c]
∑

i

[yi = c] (2.30)

The Reciever Operating Characteristics (ROC) curve is the curve traced by plotting the
true positive rate (sensitivity or recall) versus the false positive rate (fallout or 1-specificity).
Different values for precision and recall are obtained when the discrimination threshold of a
binary classifier is varied. Picking a point from the curve is equivalent to selecting a threshold
for discrimination. This can be done by considering the requirements of the application, in
some situations it may be useful to have a high recall while in other cases a high precision is
desired. The area under the curve (AUC) can be used as an effective measure of the classifier’s
performance. Several similar curves exist, such as the Detection Error Tradeoff (DET) curve

28

which plots the error rate versus the miss rate.
The confusion matrix (also known as contingency table or error matrix) is a straightfor-

ward and useful way to organize the mistakes committed by a classifier. It is a table of |C|2
entries, each row corresponding to a predicted class and each column to the true class. Each
position is essentially a bin from a histogram, which numbers the times each class c1 was pre-
dicted while having the true class label c2 (possibly c1 = c2). Of course the larger the values on
the main diagonal the matrix are, the higher the accuracy is. Precision and recall values can be
readily calculated for each class from the confusion matrix by performing row- or column-wise
summation and scaling.

2.3.10 Classifier evaluation methods
It is easy to see that evaluating classifiers is not so straightforward. Typically, classifier

minimize an error measure on a training set but simply looking at this number is often mislead-
ing, unless the training set is sufficiently large. The main reason is that classifiers should possess
the ability to generalize and should not memorize the input data. Several methods have been
devised to perform a more accurate performance evaluation.

Resubstitution is a technique used for testing where the classifier is trained and tested on
the whole data. If the training data is sufficiently large, and the classifier is properly regularized,
this can be a first alternative to evaluate the classifier. However, it is not recommended in practice
because the classifier can simply memorize the correct class labels with no generalization taking
place.

One of the most objective evaluation forms is to test the classifier on a new dataset that
contains instances not found in the training dataset. Of course the test dataset should be similar
to the training set and should be a considerable subsample from the universe of all possible
instances on which the classifier should work. The situation of having a separate test set and
training set is often not an option because of the lack of data.

Data Partitioning (or holdout) is a process by which starting from a dataset we obtain two
disjoint sets for training and testing respectively. Usually, the portion for learning is larger but
this also means that the evaluation will not be so accurate on the small number of test samples.
It is recommended to train a model on the full set after the performance is evaluated in order to
use the available data in its integrity.

Cross-validation is one of the most effective evaluation methods. It combines multiple
data partitionings to get a better estimate on the measure of generalization of the classifier. Define
an n-fold cross-validation by dividing the available data in n equal parts. After this n separate
training sessions are performed by leaving out each of the n parts respectively. The learned
model is evaluated on the part left out. The resulting score measures are averaged or aggregated
in some other manner to find a global score. Optionally the full data is fed into the training
procedure as the last step after evaluation.

By performing a cross-validation with the number of folds equal to the number of avail-
able examples we obtain a leave-one-out evaluation strategy (or Jackknife). Since this process
entails training the classifier a large number of times, if no model update strategy exists, it is very

29

time consuming. However, the advantage is that all samples are tested and there is no selection
bias (which samples should be used for learning and which for evaluation).

2.4 Region of interest selection and candidate generation meth-
ods

A region of interest signifies a zone from the image that will be processed. It is distin-
guished as a separate step in detection methods in the survey by Gerónimo et al. (2010) showing
its importance. The rest of the image is considered to have no relevant information for the current
task. Many applications have a well defined region of interest such as a simple rectangular area
of the image. In other situations we may consider to establish the region of interest dynamically.
This has many advantages but also proposes several challenges. The main advantage is that by
reducing the area that is processed we obtain a lower execution time. In case of object detection
we also eliminate false positives that would have been detected in the zones outside the region of
interest. In this section and later on we will use the terms region of interest selection, candidate
generation and object proposal to refer to the same process.

The challenge is to design an algorithm that is able to perform a region of interest selec-
tion dynamically. Also, the shape of the region must be general and not limited to a rectangular
region. Sliding window object detectors work on a search space that consists of multiple posi-
tions and bounding box heights and widths. This is a 4 dimensional space. One common way
to reduce the size of this space is the consider a fixed aspect ratio (0.43-0.5 for pedestrians). In
this case the search space is reduced to 3 dimensions: position x,y and scale (box size). Region
of interest selection should be applied directly on this space instead of image space. This is
essentially equivalent to reducing the total of candidates by quickly classifying several of them
as negatives.

In order to understand the importance of reducing the search space, we provide a quanti-
tative analysis of the expected number of candidates for an input image. Consider an image of
size A, we aim to search at every position on a fixed grid with step size of d, and we employ m
scales each time resizing the image by a factor of λ < 1. The resulting number of candidates for
this baseline setup is given by:

C =
m−1∑

k=0

A
1

d2
λk =

A

d2
1− λm
1− λ (2.31)

Typical applications use at least VGA (640 x 480) resolution input image. Plugging in
typical values for the parameters A = 480 · 640 = 307200, d = 2, m = 32, λ = 2−

1
8 ≈

0.91700 results in a number of 867512 candidates. A modern computer can execute roughly
108 operations per second. This means that even if every candidate is classified by performing
a single operation it would require 8 milliseconds for the whole image. Of course, feature
extraction and classification needs to be performed for each candidate so this time is a very low
underestimate.

30

Based on the discussion presented before, we highlight several important characteristics
of a good region of interest selection method:

• it must have a high recall - It must retain all the important regions in the image. Eliminating
any region in this step will prevent detection afterwards.

• it must have a high rejection rate - It must reject the majority of the candidates. The
property provides the key advantage of speeding up later processing steps.

• it must be sufficiently fast - Its insertion in the processing pipeline must not increase the
running time. Otherwise, it is not worth adding a supplementary processing module.

• it should be robust to slight variations - This entails producing the same results in the
presence of slight noise.

Good region of interest (RoI) selection methods can reduce the execution time of detec-
tion methods significantly because they eliminate unnecessary calls to the classifier. A survey
by Gerónimo et al. (2010) presents several approaches under the paragraph of Foreground seg-
mentation. Most of the methods make use of stereo information to detect good candidate regions
such as: Benenson et al. (2012); Labayrade et al. (2002); Nedevschi et al. (2009). Monocular
approaches are fewer in number and include: biologically inspired attentional algorithms from
Itti et al. (1998); Serre and Poggio (2010), vertical symmetry detection from infrared images
of Broggi et al. (2005) and segmentation algorithms. Simple and efficient region of interest
selection methods using only monocular information are hard to find or nonexistent.

Another important category of methods provides object candidates or object proposals.
These methods work on general objects since it has been shown that reliable features exist that
can discern general objects from the background, and that these features are independent to ob-
ject classes. The survey written by Hosang et al. (2014) presents several methods from this
category. Each of the presented approaches is evaluated in terms of recall (the percentage of rel-
evant objects successfully recalled), repeatability (same results when noise is applied to images)
and detection rate when used with a detector.

The objectness measure proposed by Endres et al. in Endres and Hoiem (2010, 2014)
relies on multiple cues to provide good object proposals as fast as possible. They employ color,
texture histogram intersection, boundary strength and several layout agreement features. They
formulate the problem as a structured learning problem and adopt a slack-rescaled method with
loss penalty to solve it.

The authors in Cheng et al. (2014) develop a fast method to provide object candidates
based on the gradient signature of the resized image. Their system is trained on features obtained
from resized images to a fixed 8x8. The gradient magnitude is binarized and an SVM is trained.
For faster prediction the SVM prediction function is replaced by a binary approximation which
transforms the linear combination into additions and subtractions.

Selective Search from Uijlings et al. (2013) tackles the problem by performing a hier-
archical clustering to obtain image segments that could represent objects. In Arbeláez et al.

31

(2014) graph cut is applied to the segmentation problem. Another promising line of research is
considering boxes that have few lines intersecting their boundaries, Edge Boxes of Zitnick and
Dollár (2014). It was shown that minimizing the lines that cross the object boundary is a relevant
measure for candidate generation. Also, this approach is constructive, meaning that it build up
candidate bounding boxes.

2.5 Object detection methods
Object detection in computer vision refers to the task of detecting the correct position of

a target object in a given input image. The result of the detection process is information about
the object pose. The simplest form of the pose is the position of the object but it can incorporate
other information such as: orientation, scale, minimal enclosing bounding box and object parts.

Object detection is difficult because the appearance of the objects in the images is highly
variable. This stems from multiple sources. Firstly, the image process itself introduces variabil-
ity due to illumination changes, digitization artifacts and camera position changes. Secondly,
the object itself may have several different appearances especially for general objects such as
persons. Successful detectors must learn the properties of the objects that are present most of
the time regardless of pose (invariants).

Two main categories of object detection can be distinguished: generative methods and
discriminative methods. Generative methods (Amit (2002); Felzenszwalb (2001); Fergus et al.
(2003)) construct a probability model for object pose and background. They rely on estimating
the conditional probability of the objects being present given certain features. On the other
hand, discriminative methods (Rowley et al. (1998); Viola and Jones (2001a,b); Felzenszwalb
et al. (2010)) learn to discern between positive and negative examples and consequently require
negative examples to perform training.

Detection can be posed as a binary classification problem by defining a positive class
for the presence of the object and a negative class for the absence of it (background). One
can perform detection by checking every position and every scale for positive instances. This
approach is typical and it is referred to as sliding window detection.

Object detection methods have a wide range of applications in a variety of areas including
robotics, medical image analysis, surveillance and human computer interaction. Current meth-
ods work reasonably well in constrained domains but are quite sensitive to clutter and occlusion.

A popular benchmark for object detection is the PASCAL VOC object detection chal-
lenge, presented inEveringham et al. (2010). More recently, large scale datasets have appeared
such as LabelMe - Russell et al. (2008) and ImageNet - Deng et al. (2009). The goal of object
detection benchmarks is to fuel the competition for best object detectors for common categories
such as people, cars, horses and tables in photographs. The challenge has attracted significant
attention in the computer vision community over the last few years, and the performance of the
best systems have been steadily increasing by a significant amount on a yearly basis.

A closely related concept is that of object recognition where the detected object is com-
pared to existing templates to find a match (such as in a biometric security system). Two main

32

types of approaches can be discerned.

Template-based recognition methods compare the content of a region to a template or a
family of templates. This treats objects as a whole and can also be called holistic. We enumerate
a few approaches from this category. Some methods from this category are: Chamfer distance
matching performed on edges and distance transform of Enzweiler and Gavrila (2009); Divide-
and-conquer methods divide the search space recursively in order to eliminate zones that are
not promising, as shown in Lampert (2010); The method presented in Torralba et al. (2007)
compares intensity values directly to templates using a flexible distance function; Methods based
on histogram representations from Linde and Lindeberg (2004); Varga and Nedevschi (2013b);
Bag-of-words transformation methods proposed in Li and Perona (2005); Lazebnik et al. (2006).

A more bottom-up approach would be to construct objects from parts by first detecting
important features in the image and combining them. Some of the most important techniques for
such detecting methods are: Scale Invariant Feature Transform of Lowe (1999) (SIFT) ensure
scale and rotation invariance and are suitable for matching objects even under large viewpoint
changes (see Figure 2.5 - the features of the train are recognized even when the object is ro-
tated and partially occluded, figure from Lowe (1999)); SURF features, proposed by Bay et al.
(2006), are a variant of SIFT features where the keypoint positions are found much faster; Hough
transform from Duda and Hart (1972) recognizes shapes and curves that have a parametric form
by accumulating votes for each parameter configuration; Methods that rely on geometric con-
sistency verification impose restrictions on the relative positions of features to enforce correct
object structure; Random Sample Consensus (RANSAC) from Bolles and Fischler (1980) is a
robust way of fitting a model onto data points that contain outliers.

Figure 2.5: Demonstrating the qualities of SIFT features for object detection and recognition.

33

2.6 Pallet detection methods
Pallet detection is a special case of object detection. In this section we present existing

approaches to this problem because a part of our work is in this field. In this case the detection
needs to be reliable and precise.

Automated Guided Vehicles (AGV) perform logistic operations without requiring human
intervention. This necessitates the existence of a sensor capable of estimating the position of
the pallet that needs to be loaded by the machine. A machine vision-based detection system for
pallets can handle multiple tasks and help the AGV reason about its environment.

Stereo cameras offer a good solution for 3D sensing applications. The cost of such sys-
tems is lower compared to laser scanners. Also camera systems offer a larger field of view
and the possibility of high level reasoning on data. The main drawback of such systems is the
difficulty of working in poor and rapidly changing illumination conditions.

Pallets are wooden supports designed to hold goods and are easily graspable by the fork-
lift because of its pockets (see Figure 2.6). Pallets are standardized and for our purposes they are
handled from only one side. We desire a flexible detection module that can identify the relative
position of the pallet from any image under various lighting conditions.

Figure 2.6: Standard euro pallet dimensions

Approaches for autonomous load handling from scientific and technical community use
different types of sensors to obtain an understanding about the environment. We will group these
approaches into two main categories: vision-based (monocular or stereo cameras) and 2D or 3D
time-of-flight Laser Range Finder (LRF). We start by describing the approaches from the second
category.

Walter et al. (2010) presents a method for autonomous manipulation of a priori unknown
palletized cargo with a robotic lift truck. The sensor involved in detection is a horizontal LIDAR.

34

Operating on the noisy points from the sensor, an algorithm is applied to perform closest edge
detection.

Sky-Trax System offers a solution to detect the presence of pallets on the forklift. The
system uses an ultrasonic sensor that uses sound waves to detect objects in its range. It has a
broad sensing area, is compact, durable, accurate and inexpensive. Pepplerl-Fuchs also offers
ultrasonic sensors for solving the same task.

SICK industries manufacture laser scanners for multiple purposes. A paper from the
National Institute of Standards and Technology - Bostelman et al. (2006) - presents a pallet
detection method based on LADAR (laser detection and ranging) using SICK S3000 laser scan-
ners. This has the advantage over cameras that it is able to operate in complete darkness and
invariant lighting. They also tackle unloading operation for trucks using the same sensor. Hough
transform from Hough (1962); Duda and Hart (1972) is applied to detect lines that represent
walls and other boundaries from the gathered laser points.

The system designed in Baglivo et al. (2011) combines two sensors, a laser scanner and
a camera to localize the pallet given some prior knowledge with large uncertainty. The pallet is
detected from the color image acquired from the camera and the points provided by the laser.
The vision part uses edge template matching and distance transform. Both sources must agree
on the detection in order for it to be considered valid. This approach suffers from the following
disadvantages: the calibration between the laser scanner and camera; edge information is not
reliable; laser scanner only offers information along scan lines. The authors have evaluated their
system on 300 examples with results indicating a good localization precision. They have found
difficulties due to lighting conditions in 5 cases.

The paper from Pradalier et al. (2008) describes a vision-based system functioning out-
doors consisting of an autonomous hot metal carrier. The system from Seelinger and Yoder
(2006) uses easily identifiable features (landmarks, fiducials) of the form of concentric circles
for easy registration. This however, requires the labeling of all pallets with such features. The
success rate they obtained from 100 operations is 98%. The work of Cucchiara et al. (2000)
makes use of corner features, region growing and decision trees. Least squares line fitting and a
single camera is employed in Byun and Kim (2008). Other approaches include: Kim et al. (2001)
line-based model matching is used; Pages et al. (2011) Colour-based segmentation; Nygårds
et al. (2000) sheet-of-light range camera.

Detection approaches for pallets can draw inspiration from other specific object detection
methods such as pedestrian detectors. We turn our attention to such approaches in the next
section.

35

2.7 Pedestrian detection methods

This section provides references to important contributions for pedestrian detection. For
a comprehensive review on the subject, the reader is advised to consult reviews and surveys such
as Dollár et al. (2012), Enzweiler and Gavrila (2009), Gerónimo et al. (2010).

The availability of benchmarks is crucial for any field in order to enable an objective com-
parison of existing algorithms. Pedestrian detection is no exception. Luckily, there are several
high quality benchmarks available for research purposes. The INRIA dataset, presented in Dalal
and Triggs (2005), is one of the first pedestrian detection benchmarks. The Caltech dataset from
Dollar et al. (2009b) contains approximately 1000 images with thoroughly annotated pedestrian
bounding boxes. Other dasaets for reporting results include: TUD Wojek et al. (2009); ETH Ess
et al. (2008); Daimler Enzweiler and Gavrila (2009).

Pioneering work in pedestrian detection was done by Dalal and Triggs Dalal and Triggs
(2005) which presented Histograms of Oriented Gradients as features. The features were specifi-
cally tailored for pedestrian detection. They are one of the first features to be used for pedestrian
detection. Its importance is demonstrated by the fact that almost every modern method uses
gradient histogram features in some form.

Viola and Jones in Viola and Jones (2001a) introduced a lightning fast approach for object
detection by combining Haar features and cascaded classifiers. Although the method presented
there is applied for face detection, it is universal and can be applied to any form of object de-
tection. Haar features are differences of sums calculated on rectangular areas from the intensity
image. Cascading enables the fast rejection of many candidates and it is the main reason for the
high speed of the method. The approach from this seminal work is extended and perfected in
many state-of-the-art algorithms.

Dollar et al. have produced numerous detection algorithms based on integral channel
features - see Dollar et al. (2009a); Dollár et al. (2010), which are related to the concept of Haar
features. In this case features are sums of pixel values of custom image channels on a rectan-
gular area. In Dollár et al. (2012) the authors speed up detection by suppressing and enhancing
detection scores based on spatial and scale proximity. In Dollár et al. (2010) the authors present
a method for approximating feature values at different scales without recomputing the actual
features. Since feature calculation at different scales is a bottleneck for most algorithms, this
improves the speed considerably. Integral channel features are employed on randomly generated
rectangles inside the pedestrian bounding box. In a more recent work from Dollár et al. (2014)
the authors show that simple square features with a 4x4 support region are enough to achieve
state-of-the-art performance and this also enables fast detection at 32 frames per second (see
Figure 2.7 from Dollár et al. (2014)).

Benenson et al. have developed top performing detection methods both in regard to
speed and detection accuracy by modifying the thresholds for their classifiers to account for scale
differences - see Benenson et al. (2012). In Benenson et al. (2013) they perform a comprehensive
analysis of the effect of different parameters such as: feature pool size, feature normalization,
number of weak learners etc. on detection performance. Franken classifiers are suggested in
Mathias et al. (2013) for a better treatment of occlusion. More recent research suggests filtered

36

Figure 2.7: Workflow of the Aggregated Channel Features pedestrian detection system.

channel features with certain patterns such as checkerboard or square improve performance, see
Zhang et al. (2015).

Non-holistic approaches of Felzenszwalb et al. (2010); Wojek and Schiele (2008) use de-
formable part models where the part locations are considered latent variables and the optimiza-
tion problem can be solved by Latent-SVM. Deep neural networks, used in Luo et al. (2014), can
automatically learn hierarchical feature representations that correspond to body parts and their
configuration. These approaches provide state-of-the-art performance on recent object detection
challenges. Their key advantage is that they are capable of learning feature representations and
thus do not require manual design in this manner.

Other methods that rely on new discriminative features have been developed for the
pedestrian detection task. Sketch tokens are introduced as contour-based features which are
learned from human sketches Lim et al. (2013). In Costea and Nedevschi (2014) Costea et al.
show that bag-of-words features are descriptive enough for the pedestrian detection task. In-
formed Haar features proposed in Zhang et al. (2014) make use of common sense knowledge to
manually design a pool of rectangular features. Spatially pooled features from covariance matrix
features and Local Binary Patterns were successfully utilized in Paisitkriangkrai et al. (2014b,a)
along with a classifier that is specifically targeted at optimizing the area under the ROC curve in
the desired interval.

The employment of additional information such as stereo depth Marı́n et al. (2013), op-
tical flow Walk et al. (2010); Park et al. (2013), bounding box context Yan et al. (2013), person-
to-person patterns Ouyang and Wang (2013) and extended training set Nam et al. (2014) can
further improve the detection rate. Benenson et al. in Benenson et al. (2014) combine many of
the previous techniques to form a powerful detector.

Recently, more and more object detection approaches rely on deep convolutional neural
networks. In pedestrian detection improvements have been registered through this method. In
Cai et al. (2015) the authors use multiple features ranging from simple to complex but push back
the calculation of the more time consuming features to later cascade stages where only a handful
of candidates are left. A fast implementation for detection is possible even with neural networks
as shown in Angelova et al. (2015).

37

2.8 Stereo matching and reconstruction
Stereo vision refers to a 3D understanding of the environment that is usually achieved

through two cameras. Human vision is of stereo type due to the fact that it employs input from
the two eyes separated by a lateral displacement. In a similar manner, two cameras placed in the
same configuration can provide sufficient information to deduce the depth of the objects. Points
from the real world that lie on the same line passing through the optical center get projected to
the same pixel position. Because of this, one camera is not sufficient enough to infer depth from
the image.

By adopting the simplification that all light rays pass through a single point (called pin-
hole camera model), the depth can be calculated if the camera parameters are known. The
required intrinsic parameters are the focal distance f , camera principal point and distortion co-
efficients. The extrinsic parameters come in the form of the translation vector and the rotation
matrix for each camera or a relative translation and rotation between the two cameras. In a
canonical configuration the relative translation vector between the two cameras has non-zero
component only along the x axis, and the cameras are aligned to face the same direction (the
rotation matrix is close to the identity).

Figure 2.8: Projection of a point onto imagers of two stereo cameras

Figure 2.8 shows an illustration of two cameras, and a point projected from the real world
unto the imaging surfaces of each camera. We follow standard conventions for defining axis and
notation. Here we discuss a planar case where the height component (y-axis) is ignored. The
same reasoning can be generalized along that axis also. The difference along the x axis between
the coordinates of the same point projected onto the two images is denoted as the disparity

38

(d = xR − x′R). We will show that the disparity value is inversely proportional to the distance to
the object.

An exact formula can be obtained by studying the similar trianglesXOROR andORX
′
LXR,

where X is the point that is being projected; OL and OR are the optical centers of the left and
right cameras, respectively; XL and XR are the projections onto the left and right image, respec-
tively; X ′L is the intersection of the line passing through OR that is parallel to XOL with the
image of the right camera. We write a similarity relation between the ratios of the heights and
bases of the two triangles:

Z

f
=

B

xR − xL
=
B

d
(2.32)

where Z is the distance from the cameras along the z axis, f is the focal length and
B denotes the baseline (horizontal displacement between the two cameras); xL and xR are the
coordinates in pixels of the projected point. From here we can express the distance based on the
other known quantities and arrive at a very important formula:

Z =
B · f
d

(2.33)

Note that in the previous formula we have supposed that the disparity value d is known
to us. However, in order to determine the correct value we need to find pixel correspondences
between the left and right image pixels. This is known as the correspondence problem and it is
difficult to solve because of: some points may not be visible in the other image (occlusion); tex-
tureless or repetitive areas can be easily mismatched and searching can be very time consuming.

The canonical configuration along with the process of image undistortion provides two
input images where the epipolar lines corresponding to the same point are horizontal. Epipo-
lar lines are the intersection of the plane passing through the point and the two optic centers
with the imager. If the cameras are not in canonical configuration, image rectification can be
performed which reprojects the point to obtain two images that correspond to a canonical con-
figuration. This is achieved by knowing the precise relative rotation and translation between the
two cameras.

The extrinsic parameters of the camera are the rotation matrixR and the translation vector
T . If these have been obtained from a calibration procedure for the left and right camera in Rl,
Tl, and Rr, Tr respectively, the rectification procedure can be performed. First, the baseline
vector is found as:

~B = ~Tr − ~Tl (2.34)

Then a possible form for the rectification rotation matrix is given by:

Rrect = [B,Rl(:, 3)×B,B × (Rl(:, 3)×B)] (2.35)

where we have calculated the columns of the matrix by taking the baseline vector, the
cross product between the third column of the left rotation matrix (z-axis), and the third orthog-

39

onal component which is the cross product of the previous vectors. This aligns the cameras so
that the x-axis becomes parallel to the baseline and the new y-axis becomes normal to the old
z-axis and the new x-axis.

We have established that in order to obtain depth information for a point we have to de-
termine its disparity value. Stereo matching algorithms produce a disparity map that contains
disparity values for each position (dense) or for certain points or zones only (sparse). Accord-
ing to an important work from Scharstein and Szeliski (2002), the major steps of each stereo
algorithm can be given by: matching cost computation; cost (support) aggregation; disparity
computation/optimization and disparity refinement.

Matching cost computation is the first step and it is the operation at the lowest level.
Its aim is to calculate the initial cost volume (disparity space) for each possible position and
valid disparity value. The approaches from the literature rely on different dissimilarity measures
between pixels such as: absolute difference, squared difference, sampling insensitive absolute
difference Birchfield and Tomasi (1998), normalized cross-correlation, binary features defined
on edges, sign of the Laplacian, gradient-based measures and non-parametric measures (Census
or Rank Transform) Zabih and Woodfill (1994).

Since matching a single pixel is unreliable, cost aggregation is necessary. By assuming
that neighboring positions have similar disparity values, local costs can be replaced by aggre-
gated versions. In the simplest form aggregation can be performed by summing or averaging
over a neighborhood of the original cost. More complicated forms include convolution with a
filter (such as a 2D or 3D Gaussian); choosing the aggregation window size adaptively; iterative
diffusion.

Disparity calculation can take into account only raw cost values. In this case the method is
local. Such approaches are prone to noise but can be implemented in situations where execution
time is critical. In contrast, global methods try to minimize a certain global cost function defined
on the whole disparity map. Most methods from this category rely on the techniques of belief
propagation such as Felzenszwalb and Huttenlocher (2006) and graph cuts of Kolmogorov and
Zabih (2001). In the middle ground, constraints can be enforced on stripes or only along certain
directions. In this case we are talking about semi-global methods which lie between the local
and global ones both in terms of speed and smoothness. Notable examples in this category are
the ones that rely scanline disparity optimization such as Kim et al. (2005) and Semi-Global
Matching introduced by Hirschmuller (2005).

The last stage aims at correcting small mistakes such as: occluded pixels, non-confident
reconstruction and small salient patches elimination (which are probably errors). In this stage
subpixel interpolation can also be performed which reestimates disparity values with higher
precision, a step that is necessary for certain applications where small disparity changes can lead
to large errors.

40

Chapter 3

Proposed features and classifiers for object
detection

Starting from the current chapter, we present the original theoretical and applicative con-
tributions of this thesis. The topics are treated in a bottom-up manner, beginning with the essen-
tial building blocks like the underlying features and the classifier. These are a common parts for
the detection systems that follow. Candidate generation approaches are presented afterwards.
We end the description with three different detection systems. Each section contains relevant
experimental validation as well as conclusions specific to the topic that is treated.

3.1 Normalized Pair Differences and other features

3.1.1 Normalized Pair Differences

The paper from Varga and Nedevschi (2016) describes our proposed features for object
detection. Our aim was to develop a feature vector that is defined on grayscale images which is
sufficiently descriptive and also robust to illumination changes. This is a requirement for systems
working in conditions where frequent exposure changes are made during image acquisition. This
may be due to changing lightning conditions or dynamic view changes.

We consider here a simplified image formation model that assumes pixel values are
proportional to the exposure time. We intend to define features that are invariant to exposure
changes. According to our crude model for changing the exposure image intensity values are
modified linearly, i.e. the resulting image J is equivalent to the original one I, multiplied by a
constant:

J = α · I (3.1)

This approximation holds also for gain changes if we ignore saturating effects. Weber’s
law states that the human response is proportional to the relative change stimuli and not to the
absolute magnitude. Inspired by this we develop a feature that reflects the importance of rela-

41

tive change. If differences between intensity features are normalized by reference values, then
the importance of changes is determined according to their relative magnitude to the reference
values.

Let I = {Ii, i = 1, n} be a set of n grayscale intensity values from an image region,
i.e. the intensity values in row-major order from the image matrix. This region is cropped from
the whole image and usually represents a possible position of an object. Since the area of the
region can be large in practice, we wish to perform a resizing operation in order to subsample
the values. Another important point is that most classifiers work with fixed size feature vectors.
So all bounding boxes should be resized to a same standard size. We define the normalized pair
difference between features Ii and Ij as:

npd(i, j) =
Ii − Ij
Ii

(3.2)

This feature contains relevant information about the relative change between the inten-
sities Ii and Ij . Firstly, the sign shows which of them is higher. Secondly, the normalization
ensures a response that is relative to the feature magnitude. The possible number of features
is of order O(n2) if all possible pairs are calculated. In most cases some region of the input
rectangle can be discarded.

We can easily verify that a property of this definition is invariance under multiplication
with a constant:

α · Ii − α · Ij
α · Ii

=
Ii − Ij
Ii

(3.3)

This property will ensure the robustness of the descriptor against camera exposure time
changes. In practice it is recommended to limit the values of the features. Since the fraction
can have large values, we apply a sigmoid type function to confine the features in the interval
[−π

2
, π
2
].

npd(i, j) = tan−1
(
Ii − Ij
Ii + ε

)
(3.4)

The constant ε is a small number that helps avoid division by zero. This formulation
is practical because it avoids additional checks for the magnitude of Ii. The inverse tangent
function can be replaced by any sigmoid-type function but should be included because it has a
beneficial effect.

To describe the whole region we select all possible intensity pairs Ii and Ij and calcu-
late npd for each of them. The concatenation of the obtained values will be considered as the
descriptor of the region. This results in a n(n − 1)/2 dimensional feature vector which is large
even for small size patches.

We have also considered an alternative version of this descriptor. We can choose an
intensity value as a reference and compare all other ones to it. This results in a descriptor that is
of size n− 1 only but is less descriptive and prone to noise in the reference intensity value. The
reference value may be changed to be the mean of the intensity of the region.

42

We illustrate the concepts defined above in the context of pallet detection. Figure 3.1
shows a pallet with an overlayed grid. Each cell in the grid will become one single intensity
value Ii. This essentially means that the crop from the image will be resized to the given grid
size. Note that certain zones from the image may not be of interest. These cells are marked with
red in the figure. We eliminate them by providing a binary mask and do not consider values from
those regions.

Figure 3.1: Feature grid of 3 x 16 overlayed on an object (pallet)

Algorithm 3 Calculate Normalized Pair Differences features - npd(I)

Input: an input image I (or a subregion of it), mask for eliminating regions
Output: an array with feature values F

1: I = resize(I, w, h)
2: allocate F , k = 0
3: for i = 1 : w · h do
4: if mask(i) = true then
5: for j = i+ 1 : w · h do
6: if mask(j) = true then
7: k = k + 1
8: F (k) = atan(I(i)−I(j)

I(i)+ε
)

9: end if
10: end for
11: end if
12: end for
13: return F

Algorithm 3 describes the exact procedure for calculating npd features. The algorithm
depends on the target window width and height, denoted by w and h respectively. First, the
image is resized to the target dimension. Then each pair that has both elements in the valid zone
is considered. The time complexity of this algorithm is O((wh)2), i.e. quadratic in the number
of elements considered. If the mask eliminates an α proportion of the regions from the image

43

this can be lowered to O((αwh)2).

3.1.2 Sparse Local Binary Pattern Histogram

Local Binary Pattern (lbp) features have been successfully used as features for texture
description. For a given region the histogram of lbp values offers a descriptor that is invariant to
the illumination changes. In our detection methods we employ such a histogram and calculate it
using a slightly modified version of the original algorithm. We provide this in the following for
completeness of description.

Algorithm 4 Calculate sparse LBP histogram - lpbHist(I)

Input: an input image I (or a subregion of it), sparsity parameter s
Output: an array with feature values H

1: H = [0] ∗ 256
2: for i = 1 : s : I.height do
3: for j = 1 : s : I.width do
4: descr = lbp(I, i, j)
5: H[descr] + +
6: end for
7: end for
8: H = H/sum(H)
9: return H

Algorithm 3 describes a slightly modified lbp histogram calculation procedure. We in-
troduce a parameter s that controls the density at which we sample the lbp values. This small
trick reduces the time complexity from O(I.width · I.height) to O(I.width · I.height/s2), i.e.
provides a quadratic speedup factor. This is important to consider since the input region can have
a large size. The lbp values for each pixel position are precalculated once for the entire image.
We have found that this approach with on-demand histogram calculation is faster than construct-
ing integral images for each possible lbp value. This would require 256 integral images which
results in high memory consumption. In our experiments we have found that the subsampling
does not affect the form of the histogram in a significant manner. Because of this we set s = 5
for typical cases.

3.1.3 Edge density features

Another important feature we use to measure edge strength is the density of the gradient
inside a rectangular area. Calculating density entails normalising by the size of the region. This
is helpful because it creates a descriptor that does not depend on the size of the input image.

44

Algorithm 5 Calculate edge density along boundary regions - edgeDensity(I)

Input: an input image I (or a subregion of it), regions Rk, precalculated integral image for the
gradient values IE

Output: an array with feature values E
1: for k = 1 : nrregions do
2: E(k) = IE(Rk.bottom,Rk.right) + IE(Rk.top, Rk.left)
3: E(k) = E(k)− IE(Rk.bottom,Rk.left)− IE(Rk.top, Rk.right)
4: E(k) = E(k)/area(Rk)
5: end for
6: return E

Algorithm 5 presents the processing steps for the edge density features. The two key
ingredients are calculating regional sums using an integral image called IE and the normaliza-
tion by the size of the area. In most cases these features are evaluated at multiple bounding box
locations relative to the central object. The time complexity is O(K), where K is the number of
regions to consider.

3.1.4 Experimental Results
We have performed tests in order to evaluate the invariance properties of the features

we use. A sequence containing 317 measurements is recorded of a static pallet with varying
exposure time. The change in exposure time modifies the appearance of the pallet from barely
visible to saturated white. Descriptors are extracted from the same region. We evaluate the mean
and the maximum of the standard deviations of each component. The Euclidean distance is also
calculated between each descriptor pair and the mean and the maximum is found. We divide by
the feature dimension for a fair comparison. All feature values are normalized to be in the range
[-1, 1]. Table 3.1 shows the results, entries are ordered from top to bottom from least invariant
to most invariant (we show only values for differences).

Feature dim. mean std. dev max std. dev. mean diff. max diff.
intensity 53 2.29e-01 3.18e-01 3.78e-02 1.09e-01

edge 53 6.25e-02 3.38e-01 2.44e-02 4.23e-02
npd 1327 5.34e-02 4.08e-01 2.74e-03 6.11e-03
lbp 257 1.18e-03 5.86e-02 2.93e-04 8.43e-04

Table 3.1: Measuring exposure invariance properties of different descriptor types

The table includes intensity features as a baseline. The npd features have similar proper-
ties as the lbp histogram but they are more descriptive and structure information is maintained.

45

By looking at the mean and maximum differences we can state that npd features change less
under the tested conditions compared to the intensity and edge features.

3.1.5 Conclusions
The current chapter described features which can be efficiently computed. Such features

that are required for successful and fast detection procedure. All of the presented proposals
and improvements can be calculated efficiently. Normalized Pair Differences create a signature
for the object that is robust to illumination changes. The Sparse LBP Histogram constructs
the traditional LBP Histogram on a subset of data points for faster execution. Edge density
features defined on custom regions can be evaluated efficiently and provide relevant information
for detecting boundaries. The impact on the classification/detection performance will be studied
in later sections. The work from this part has been published in Varga and Nedevschi (2016).

46

3.2 Boosted ensemble classifiers with decision trees as weak
learners

This section presents contributions for implementing boosted classifiers with decision
trees efficiently. We highlight how our proposals are different from existing implementations.
We also derive the computational complexity for each function and evaluate the classifier on
machine learning benchmarks. The true test to the correctness of the implementation results
from the success of the detection methods presented later on.

Research in object detection has shown that ensemble classifiers are one of the most a
powerful classifiers. In most cases they are implemented with decision trees as weak learners.
The depth of the trees is limited to 2 in most pedestrian detection methods. Training is performed
with Discrete AdaBoost or other similar variants. Several state-of-the-art pedestrian detection
methods employ such a classifier, e.g. the works from Benenson et al. (2014); Dollár et al.
(2014). The main advantage is that it has a very fast prediction function at almost no cost for
detection accuracy.

There are several implementations for AdaBoost available: Weka (Java), jBoost (Java),
scikit-learn (python), mlpack (C++), MultiBoost (C++), Piotr’s toolbox Dollár (2006) (Mat-
lab/C++). Of these the closest to our needs is the one by Dollar. It was employed for training
a pedestrian detection classifier and it is self-contained. We highlight the important differences
between our proposal and their implementation: ours is a pure C++ implementation; we per-
form no feature quantization and obtain the same speed; no feature subsampling is done. The
other libraries are either implemented in a slow interpreted language or do not have functions for
training/predicting with the powerful combination of AdaBoost + Decision Trees. For instance,
MultiBoost has only decision stumps implemented. In general it is hard to find an implementa-
tion that is includable in a C++ project and is lightweight.

Even though the prediction phase is simple and efficient, a naive implementation of train-
ing several decision trees on a large dataset is unfeasible. Each decision tree has to select the best
error threshold for each feature. In the following we describe our proposed implementation that
optimized running speed and memory consumption. We describe our proposed modifications to
the standard algorithm that yields a faster code.

Let us denote the number of features by D and the number of training instances by N .
One could try using each feature value as a threshold and then check the training error in each
case. This would lead to a O(D · N2) algorithm which is highly inefficient and is already
intractable for a dataset of order 1e5. By first performing a sorting and then selecting thresholds
between two consecutive feature values, we achieve an O(D ·N · log(N)) time algorithm. This
can be further improved by sorting only once at the startup and saving the ordering. Some
approaches (such as Marı́n et al. (2013)) optimize the execution time by randomly subsampling
the features and thus reducing the value of D.

To summarize, our proposed speed-up consists in remembering the rank of each instance
for each feature. At the splitting phase these ranks are propagated to the children. To show that
this is correct we rely on the fact that reweighting the instances does not affect the order of the

47

feature values. This leads to an O(D · N) algorithm after an initial sorting step, which is done
only once in the beginning.

The fast implementation by Dollar in Dollár (2006) in Matlab/C++ achieves a low execu-
tion time by employing feature quantization and then by calculating the cummulative distribution
function of the histogram to achieve the same time complexity as our proposed method. In con-
trast, we do not quantize the feature values and obtain the same speed. For some classification
tasks, preserving the original unquantized feature values is proven to beneficial.

3.2.1 Decision tree algorithms

We start a more detailed description of the classifier functions by showing the prediction
function for decision trees in Algorithm 6. The other more complex parts can be built around
this basic function. The required input is an array of features denoted by X . The decision tree
is traversed from root towards a leaf based on decisions at each node. If the feature value stored
at the node’s index is smaller than the threshold value stored in the node, then we descend to the
left child, otherwise to the right child. When a leaf node is reached, the label of the node gives
the prediction result.

The time complexity of this algorithm is given by O(maxdepth) since it requires the
traversal of the decision tree of maximal depth maxdepth, which is independent of the size of
the feature vector. Only comparisons and assignment operations are required. If the node label
value is set later, even multiplication operations are avoided. The is possible because labels are
of the form±αt for each tree. The space complexity of the prediction algorithm is O(1) because
it is independent of the size of the feature vector or the depth of the tree.

The binary tree is stored as an array by indexing the nodes in preorder. No linking through
pointers is required because the left and right child of each node i is located at positions 2i + 1
and 2i+ 2 respectively. All index values are required to be less than the feature dimension D.

Algorithm 6 Decision tree predict - predictTree(X)

Input: decision tree model and input vector X
Output: decision tree prediction

1: node = root
2: while node has children do
3: if X[node.index] < node.threshold then
4: node = node.leftchild
5: else
6: node = node.rightchild
7: end if
8: end while
9: return node.label

Given this prediction mechanism we can now describe the training procedure to obtain

48

such a tree structure. The objective that is minimized during the training phase is the weighted
classification training error. This is the sum of the weights of the misclassified instances from
the training set:

Ew =
∑

predictTree(Xi)Yi<0

wi (3.5)

Since the weights of the instances will be changed, the objective function will be min-
imized by different trees at each stage. The training procedure is described in the following
Algorithm 7. It is recursive and it starts from the root of the tree. The parameters indexes con-
tains all indexes at first and depth = 0. The procedure stops when the maximum depth of the
tree is reached. Another terminating conditions is if the distribution of the instances is dispro-
portionate. In this case always predicting the same class label would result in a low error rate
and this is chosen.

In preparation we find the sum of the weights of the positive examples s+ and sum of the
weight of the negative examples s−. Next, each feature is checked to find the error for splitting
at some threshold (lines 10-35). Since the order of the indexes when the instances are sorted
based on each feature is available in the matrix oi, we need to perform a linear pass only. During
each pass we can find the error for classifying all instances smaller than the current feature value
as negative instances in err−. Since the instances are ordered, the misclassified examples up
the current position have the value v+ and the other mistakes above the threshold add up to
s− − v−. A similar reasoning holds for err+. The minimal error is retained along with the label
and threshold for which it was obtained. The global error and field values are chosen based on
each feature.

Lines 36-43 construct the list of instances that are placed in each subtree. Based on these
lists and the oi ordered indexes matrix, the new oileft matrix is generated by preserving the order
but only using the indexes from the left list. A similar procedure is used for the right subtree.
Recursive calls are made using the constructed data and reusing the training set X and Y . This
is important because for a large training size of the memory is consumed by X and Y and we
must avoid unnecessary copying. The label of the child nodes is set by the parent based on the
best error found.

The execution time of the algorithm is dominated by the error minimization procedure
which is clearly O(D ·N) in time. Since at each depth the same number of operations or less are
performed, we have the total time complexity of O(md ·D ·N), where md is maximum allowed
depth of the decision tree. The space complexity is given by O(N ·D) required for storing the
ordered indexes for the subtrees after splitting. For training sets having less than 216 = 65536 -
which is common - two bytes (short datatype) are sufficient for each index which saves space.

Parallelization of the training procedure is possible since the outer loop for finding the
best threshold value can be performed independently. In this case the optimal error values and
configurations are saved in an array of size O(D). Executing calls on the subtrees on different
threads is not efficient since tree sizes can be unbalanced.

49

Algorithm 7 Train Decision Tree - trainTree(X, Y,w, oi, indexes, depth)

Input: feature vectors X , label vector Y , weight for each instance w, ordered indexes oi, se-
lected/active instances, depth in the tree

Output: decision tree as a binary tree with each node containing pointers to children, index for
splitting, threshold for splitting and label

1: n+ =
∑

Y (i)>0 1

2: n− =
∑

Y (i)<0 1

3: if depth == maxdepth OR n+ < th OR n− < th then
4: node.threshold =∞, node.index = 0,
5: node.leftchild = node.rightchild = 0, node.label = sgn(

∑
w)

6: return
7: end if
8: s+ =

∑
Y (i)>0w(i)

9: s− =
∑

Y (i)<0w(i)
10: for i = 1 : D do
11: v+ = v− = 0
12: for j = 1 : N − 1 do
13: if Y (oi(i, j)) > 0 then
14: v+ = v+ + w(oi(i, j))
15: else
16: v− = v− + w(oi(i, j))
17: end if
18: err− = v+ + s− − v−
19: err+ = v− + s+ − v+
20: err = min(err+, err−)
21: if err < err∗ then
22: err∗ = err
23: if err− < err+ then
24: label = −1
25: else
26: label = 1
27: end if
28: threshold = (X(oi(i, j), j) +X(oi(i, j + 1), j))/2
29: end if
30: end for
31: if err∗ < global then
32: global = err∗
33: update node fields with saved label, index = j and threshold
34: end if

50

35: end for
36: left = [], right = []
37: for j = 1 : N do
38: if X(j, index) < threshold then
39: left.append(j)
40: else
41: right.append(j)
42: end if
43: end for
44: split oi in oileft and oiright based on left and right
45: call trainTree(X, Y,w, oileft, left, depth+ 1)
46: node.leftchild.label = label
47: call trainTree(X, Y,w, oiright, right, depth+ 1)
48: node.rightchild.label = −label

3.2.2 Ensemble classifier algorithms
Training of the ensemble classifier using AdaBoost follows the standard algorithm with

a few adjustments (Algorithm 8). We begin by sorting each feature column and retaining the
permutation required for ordering. This data structure is needed for the subsequent training
phase. As stated before, this step requires O(D · N · log(N)) but it is done only once and
it provides a large speedup for later steps. For each stage we find the optimal decision tree
using Algorithm 7. The optimal tree depends on the weight distribution which is uniform in the
beginning but changes in function of the misclassified examples. The weights are modified with
a multiplicative factor, scaling up the weights of the examples classified wrongly.

Another addition to the standard method is that we change the label of the decision tree.
This avoids multiplying at prediction time with cm by setting the labels of the decision tree leaves
from ±1 to ±cm. Such small changes impact the speed because the prediction operations are
performed millions of times. Obtaining an error larger than 0.5 should not happen and it signals
an unusual situation.

Algorithm 8 Train ensemble classifier (Discrete AdaBoost) - train(X, Y)

Input: feature values for all training instances as X ∈ RNxD matrix and class label for each
instance as Y ∈ {−1, 1}N vector

Output: boosted classifier with lowest error rate
1: for all feature index i do
2: order column vector X(:, i)
3: save permutation required for ordering in oi(i, :)
4: end for
5: initialize weight vector w(:) = 1/N
6: for t=1:nrweak do

51

7: errt = trainTree(X,w, oi)
8: if errt > 0.5 then
9: break

10: end if
11: cm = 0.5log(1−errt

errt
)

12: treet.setLabel(cm)
13: for i=1:N do
14: wi = wi · exp(−cm · yi · predict(Xi))
15: end for
16: w = w/sum(w)
17: end for

The prediction function for the ensemble classifier is given in Algorithm 9. It is a rejection
cascade with a fixed threshold encoded in the variable rej < 0. If the partial score of the
classifier is less than rej, then the result is returned. This produces a speed boost because
the majority of examples are usually negative. The upper bound for the execution time of this
module is O(nrweak ·maxdepth) but in practice not all stages are evaluated and the classifier
returns prematurely.

Algorithm 9 Ensemble classifier predict - predict(X)

Input: nrweak decision trees, negative rejection threshold rej, input feature vector X
Output: prediction result res

1: res = −rej
2: for i = 1 : nrweak do
3: res = res+ predictTree(X)
4: if res < 0 then
5: return res
6: end if
7: end for
8: return res

The classifier presented in this section is capable of handling large datasets and is able to
exploit multiple cores for execution by paralellizing at the feature selection level. This module
can be used as a solid building block for general object detection.

3.2.3 Experimental results

To test the classifier, we apply it to several classification benchmarks. The datasets repre-
sent supervised learning problems posed as binary classification tasks. We work with numerical
data and several features. Table 3.2 provides statistics about the datasets such as: number of
features, training set size and test set size. The source of these is the Machine Learning Reposi-

52

tory 1. Where no train/test split exists, the whole set is used and crossvalidation is performed for
evaluation.

name nr. features training set size test set size
adult 14 32561 16281

pima-indians-diabetes 8 768 768
wdbc 31 569 569

skin-nonskin 3 245057 245057

Table 3.2: Classification benchmark statistics

Table 3.3 shows the error rate obtained for different classifiers. We include the best results
reported on the site for the benchmarks as well as from 2, there are probably other publications
with better results.

3.2.4 Conclusions
The presented algorithms for training and predicting are essential to the detection system

that are going to be presented. We have shown how to implement decision tree training efficiently
for large datasets. By performing a sorting operation in the beginning of the training phase, the
time complexity of the execution time of the following steps can be reduced from O(D ·N2) to
O(D ·N), where N is the number of training examples and D is the dimension of each feature
vector.

Other relevant changes to the standard high level AdaBoost algorithm are required for
further speed gains. In this regard the important proposed steps were: preserving the sorted
structure at training during the splitting phase, implementing decision trees as arrays that store
the nodes in preorder and premultiplying by the weight factor to avoid multiplications entirely
at prediction.

The experimental section shows that the classifier has both fast execution time at training
and at testing and also provides excellent accuracy values on several classification benchmarks.
The library source code is available publicly at the repository at 3.

1Dataset repository
2Classification benchmark results
3Classification library repository

53

http://archive.ics.uci.edu/ml/index.html
http://www.is.umk.pl/projects/datasets.html
https://github.com/mrvargarobert/SFML

adult
classifier parameters error rate training time test time

Boosting + Decision trees depth = 3, 15 trees 14.06 % 0.27 sec 0.005 sec
K-Nearest Neighbor K = 31 19.74 % 0 70.26 sec

Naive Bayes Gaussian - 31.35 % 0.002 sec 0.006 sec
FSS Naive Bayes - 14.05 % - -

pima-indians-diabetes
classifier parameters error rate training time test time

Boosting + Decision trees depth = 20, 100 trees 2.34 % 2.98 0.008 sec
K-Nearest Neighbor K = 127 32.42 % 0 0.051 sec

Naive Bayes Gaussian - 29.81 % 0 0.001 sec
Logdisc - 22.3 % - -

wdbc
classifier parameters error rate training time test time

Boosting + Decision trees depth = 5, 5 trees 4.01 % 0.005 sec 0.001 sec
K-Nearest Neighbor K = 81 33.55 % - 0.047 sec

Naive Bayes Gaussian - 8.43 % - 0.001 sec
Naive MFT - 2.9 % - -

skin-nonskin
classifier parameters error rate training time test time

Boosting + Decision trees depth = 5, 100 trees 0.05 % 5.97 sec 0.13 sec
K-Nearest Neighbor - - - ∞

Naive Bayes Gaussian - 9.22 % - 0.084 sec
FSS Naive Bayes - 2.9 % - -

Table 3.3: Classification benchmark results

54

Chapter 4

Proposed candidate generation methods
for fast object detection

This section presents proposed methods for candidate generation. We use the terms can-
didate generation, object proposal generation and region of interest selection to refer to the same
procedure whereby the search space for the sliding window classifier is reduced to a smaller one
either in a constructive way or by eliminating certain regions.

Existing object proposal methods were described in the previous chapter. We have demon-
strated the need for a RoI selection module in applications where speed is critical. For a survey
in this domain the reader should consult Hosang et al. (2014). Some best performing object
proposal methods that are relevant to the current topic are: Endres and Hoiem (2010, 2014); Ui-
jlings et al. (2013); Cheng et al. (2014); Zitnick and Dollár (2014). However, these approaches
from the literature are for general objects. In this thesis we provide algorithms for specific object
categories such as pedestrians and pallets. Later, we also provide a description of the system in
which they can be integrated.

4.1 Pedestrian candidate generation based on position

In usual applications we are interested in detecting objects that appear only in the center
of the image. An elementary approach would be to disregard the margins of the image to reduce
the search space. However a more appropriate indicator is the position of center of the bounding
box. We propose to admit only the rectangles whose centers lie in the central horizontal stripe
of the image. This is a heuristic which is easy to implement and it can be verified by performing
statistics on an extensive object detection dataset.

In Figure 4.1 we show the spatial distribution of the centers of bounding boxes for pedes-
trians from the Caltech pedestrian detection benchmark. It is easy to see that almost all box
centers lie in a horizontal stripe. More quantitatively, 99.77 % of the boxes have their centers
in the 200:300 stripe. Adopting this approach results in a 100

480
≈ 0.2 reduction of the number of

candidates to consider. This condition can also be easily checked.

55

bbs center distribution, 99.7742% in the 200:300 stripe

x

y

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 4.1: The distribution of bounding box centers from the Caltech pedestrian benchmark

We apply this selection module for pedestrian detection in Varga et al. (2014). The pre-
vious module was slow compared to the optimized feature extraction and classification module.
This was the reason for adopting a simple and effective selection module. The tendency for
objects to occupy central position is a general phenomenon and this fact can be reused in other
applications also. In Hosang et al. (2014) one of the baseline object proposal methods is based
on generating random boxes with center position and area drawn from a normal distributions.
For a large number of samples this approach performs well indicating its usefulness.

4.2 Pedestrian candidate generation based on gradient
We have proposed a region of interest selection method for pedestrian detection that is

based on edge strength. Our work has been published in Varga and Nedevschi (2013a). Here we
provide details about the design of the algorithm. We have opted for a gradient-based method
because it is fast to calculate and because object boundaries are likely to be present where the
gradient magnitude is high. One can treat the ROI selection method as a simple classifier or
candidate generator. This classifier must be fast enough to enable speeding up the system as a
whole.

To successfully delimit objects we search for the top and bottom boundary. We opt for
vertical boundaries since pedestrian width has a lot a variance and there are many other objects
with vertical structure. Our approach can be viewed as constructive since it searches for possible
positions for the top and bottom of candidates and constructs a list of candidates from these
rather then eliminating candidates. This contrasts other methods from the literature where all
possible regions are examined. We present our approach as pseudocode in Algorithm 10. The
different steps of the algorithm are also visualized in Figure 4.2.

56

Algorithm 10 Candidate generation for pedestrians based on the gradient map

Input: Input image.
Output: Regions of interest as an array of rectangles.

1: Filter the image with a Gaussian filter
2: Obtain the edge image using a filter for the y direction (vertical).

Name the filtered image top.
3: Suppress small values using a fixed or dynamic threshold t1.
4: Filter the image top with a horizontal box filter of dimension d.

Name the filtered image bottom.
5: Set RoIs = ∅
6: for all possible rectangles with top center point (x, y) and height h do
7: if top(x, y) > t1 and bottom(x, y + h) > t2 then
8: Add the rectangle (x− h/2, y)− (x+ h/2, y + h) to RoIs.
9: end if

10: end for

Step 1 helps to reduce noise, especially in images with high edge density (eg. dense
foliage). In step 2, we apply a gradient edge filter in y direction to obtain the top and bottom
boundaries. We can use different methods for obtaining edge image such as: filtering with Sobel,
Prewitt or Scharr kernels, or applying the Canny edge detection algorithm. From hereafter we
shall refer to the result of either of these operations as the top image because it determines to
positions of bounding box tops.

We proceed by searching for locations where the gradient has a high value. For this, in
step 3 we threshold to zero all pixels under a given value t1. All non-zero locations will be
considered as the middle point of the top of a potential bounding box. All that is left is to find
the matching bottom, and the width is determined by the fixed aspect ratio. We observe that the
bottom of a bounding box for a pedestrian will touch the feet, but it may touch it roughly at a
single point (in the case of standing pedestrians when viewed from side) or in multiple points
(for walking pedestrians). This suggests that it is not enough to search for the bottom of the
bounding box under the first initial top point. We propose to sum up gradient values along the
horizontal direction and to check these sums for possible bottom delimitators. To save time,
the sums are precalculated using a horizontal cumulative sums resulting in a 1-dimensional box
filter. This corresponds to step 4.

The region of interest selector will then consider all possible rectangles and will decide
it is a region of interest if the gradient at the top has a value larger than a threshold t1, and also
if the sum of gradients along the horizontal at the bottom is above a second threshold t2 (steps
5-10). The parameters for this classifier are: the type of edge detection (Sobel, Scharr, Prewitt,
Canny), threshold value for the top image t1, the dimension of the box-filter d, threshold value
for the bottom image t2, the heights of the admissible bounding boxes and the standard deviation
of the Gaussian smoothing σ applied before processing (0 for no smoothing).

Figure 4.2 shows the results of the processing steps. You can see from left to right:

57

Figure 4.2: Illustrated steps from Algorithm 10.

possible top position and bottom line; Sobel filtered image; thresholded edge image; horizontal
box filtered image and final resulting candidate.

4.3 Bottom-up constructive candidate generation for pallets

A constructive approach for region of interest selection entails building object candidates
from bottom-up. Several top performing candidate generation algorithms operate this way such
as: Selective Search in van de Sande et al. (2010) and Edge Boxes from Zitnick and Dollár
(2014). The advantage is that it avoids the verification of every possible position for rejection.
Instead, we generate possible boxes by finding their boundaries and combining these.

It is an acceptable assumption that most object boundaries are located at image edges. The
constructive candidate generation algorithm detects the four edges of the bounding rectangle by
inspecting the gradient image. In the related works section we have presented such an approach
but that required checking every position. Here we propose improvements and extensions.

An essential step is the way in which we obtain the gradient image. The gradient image
is needed for edge and line detection. Normalized gradient has been proposed and employed in
calculating HOG Dalal and Triggs (2005) features and also in modern pedestrian detection algo-
rithms Dollár et al. (2010). Normalized gradient values are obtained by box-filtering the gradient
magnitude and dividing the original gradient magnitude and other channels by the filtered values.
This ensures a successful edge detection even in dark regions.

In the following we provide the exact steps for calculating the normalized gradient maps.
The gradient components along the x and y axis are obtained in a standard way by convolution
with Sobel filters:

Gx = I ∗ Sx (4.1)

Gy = I ∗ Sy (4.2)

The gradient magnitude is defined as the L1 norm of the two components:

M = |Gx|+ |Gy| (4.3)

The box filtered magnitude will act as a normalization factor:

M̂ = M ∗B (4.4)

58

where B is a square box-filter of dimension w x w. Typical values for w are odd numbers
from the interval [5, 25]. It is important to note that this filtering can be performed in O(1)
time per pixel for any filter size w. The normalized magnitude and the normalized gradient
components are obtained by dividing the original values with the box filtered gradient magnitude
(pixel by pixel):

M = M/(M̂ + ε) (4.5)

Gx = λ ·Gx/(M̂ + ε) (4.6)

Gy = λ ·Gy/(M̂ + ε) (4.7)

All division and summation operations in the previous definitions are carried out element
by element. The small constant ε = 5e− 3 avoids division by zero. The multiplier λ is required
to convert the normalized values into the [0, 255] interval.

Intuitively, this operation produces strong responses where the relative change in intensity
is large compared to the average intensity change in the neighboring region. This improves edge
detection in poorly illuminated regions.

Once the gradient images are available we can proceed and perform edge and line detec-
tion. Candidate rectangles will be built from the detected lines. We first employ the normalized
gradient in the y direction as in eq. (4.7) to detect important horizontal lines called horizontal
guide lines. A histogram that accumulates gradient values along each line is used to find local
maxima. In other words we perform a projection along the horizontal direction. The neighbor-
hood size for the local maximum is fixed and it controls the density of lines that will be detected.
The threshold for marking local maximums is chosen adaptively based on histogram values.
More precisely, only values higher that the mean and a constant times the standard deviation are
admitted. This approach is appropriate when the structure of the image contains strong horizon-
tal lines and we can rely on the extracted guidelines later on. See Figure 4.3 for an illustration
of the previous concepts. The projection of the gradient is shown on the left side of the image as
a histogram. Detected lines correspond to the positions of local maximums in the histogram.

Figure 4.3: Visualization of the horizontal guideline detection process.

Vertical lines are detected only between guideline pairs that fit the dimension constraints.
These lines are detected where the sum of gradient along x direction exceeds a certain percentage

59

(10 %). Summation can be performed in constant time by calculating integral images first.
The resulting candidate rectangles arise from combining vertical edges that fit the dimension
constraints regarding width, height and aspect ratio.

Algorithm 11 describes the candidate generation algorithm. First, we accumulate the
gradient values along the y axis find local maximums in the vlines list (line 6). The cumulative
sum along the y direction is calculated to faster edge density calculation. Next, we consider
each pair of vertical lines. If the difference between them satisfies the dimensional constraints,
we proceed and calculate the edge strength between the two horizontal lines by making use of
the cumulative sum E. The position of the local maximums are found in line 22. If both the left
boundary and the right boundary (with a certain amount of slack to allow for variation) is among
these positions a new candidate is added to the list.

The time complexity of this algorithm is O((I.height/v)2 · I.width) where v is the size
for the vertical local maximums. This may be large but all operations are fast since we only
require additions and conditional statements. Edges are marked as strong in an indicator array if
their edge strength is above a certain threshold.

Algorithm 11 Generate candidates based on gradient - candidatesEdge(I)

Input: an input image I
Output: an array with rectangles candidates

1: Calculate Gx, Gy and M
2: hist = [0] ∗ I.height
3: for i = 1 : I.height do
4: hist[i] =

∑
j Gy(i, j)

5: end for
6: vlines = nms(hist, v)
7: E = cumsum(Gx)
8: candidates = []
9: for i = 1 : size(vlines) do

10: for j = i+ 1 : size(vlines) do
11: height = vlines(j)− vlines(i)
12: width = height/apect ratio
13: if height < min height OR width < min width then
14: continue
15: end if
16: if height > max height OR width > max width then
17: break
18: end if
19: for k = 1 : I.width do
20: edges(k) = E(j, k)− E(j, i)
21: end for
22: hlinesi,j = nms(edge, h)
23: for k = 1 : I.width do

60

24: if k ∈ hlinesi,j AND k + width ∈ hlinesi,j then
25: candidates.add(rect(i, k, width, height))
26: end if
27: end for
28: end for
29: end for
30: return candidates

The region of interest selection method presented here is applicable mainly for objects
that have a near rectangular shape such as cars, buildings, poles etc. In the papers Varga and
Nedevschi (2014, 2016) we have applied it for pallet detection. The frontal view of pallets is
rectangular so this approach is well suited for such applications.

4.4 Incorporating stereo information for candidate genera-
tion

In applications where we have access to stereo depth information, we can limit the region
of interest for processing by considering only the objects with fronto-parallel surfaces. The
reason for this is that the axis of the stereo system is roughly perpendicular to the target objects.
Also, relevant objects tend to occupy a central position and a large percentage of the image.

Objects with fronto-parallel surfaces appear as a line in the u-disparity map. Also, they
lie on the disparity plane with high appearance frequency. We define the principal disparity as
the disparity value that corresponds to the highest local maximum from the disparity histogram.
The highest local maximum is considered because this corresponds to the largest obstacle in
front of the camera. We call principal disparity plane the plane obtained by selecting only points
that are close to the principal disparity. This is equivalent to highlighting only the objects that
are closest from the visual scene.

Once the principal disparity value is determined, the region of interest can be limited to
the zone where such disparity values are frequent. We do this by starting from the extremities
(left, right and bottom) and shrinking the boundary of the original region of interest until the
frequency of the preponderant disparity exceeds a limit (see Figure 4.4). The limit is chosen
in an adaptive manner based on the mean and standard deviation of the histogram. Principal
disparity also gives us information about the approximate and expected dimensions of the objects
in the image plane. This also reduces the number of possible candidates. We apply normal edge-
based candidate generation on the reduced region of interest and apply the new constraints found
regarding the size of the object.

In the paper Varga and Nedevschi (2016) we have presented a system that incorporates
the presented approach successfully. Target pallets are detected only on a limited region that
corresponds to the most preponderant fronto-parallel obstacle from the scene. Figure 4.4 illus-
trates a sample result and describes the processing steps required. The image contains: top-left -

61

disparity histogram; top-right - original image with reduced region of interest marked with white
lines; bottom-left - v-disparity map; bottom-right - disparity map with values highlighted that
are close to the principal disparity; the projections along the two axis are visualized that help
determine the region boundaries.

Figure 4.4: Stereo-based candidate generation - sample result.

Boosted decision trees offer both high classification accuracy and fast prediction time.
Since prediction is made by comparing individual features against threshold, the time taken does
not depend on the dimension of the feature vector. This enables us to use longer feature vectors
and pick the best features at training time.

The classifier is trained using the positive examples available from the manual annota-
tions. Negative samples are generated automatically from each training image from regions that
surely do not contain any of the target objects. A bootstrapping process can be applied which
trains a new classifier by including the mistakes made by the old one.

State-of-the-art pedestrian detection systems employ decision trees that are limited to
height 2. It has been shown that this is a sweet spot that ensures the most accurate detection.
In Varga et al. (2015) we test whether or not such an observation holds for pallet detection.
Aside from the fact that we detect different types of objects, our feature vector also has other
characteristics.

We operate with more descriptive features called normalized pair differences (npd).
These features were proposed by us in a different work specifically for the task of pallet de-
tection. They represent intensity pair differences normalized in such a way as to ensure certain
illumination invariance properties.

Decision trees with limited height/depth are usually a compromise. It is often the case that
leaf nodes contain a mixture of positive and negative instances and thus the tree must misclassify
a certain percentage of the instances. By enabling a larger depth one can expect to have a more
powerful classifier because of the increased possibility of branching further. Care must be taken

62

because this runs the risk of overfitting on the training data since the classifier becomes stronger.
However, increasing the depth of the tree requires storing more data and as a consequence the
memory requirement grows exponentially.

4.5 Experimental results

Candidate generation algorithms are evaluated by checking the overlap between the can-
didates provided by the method and the ground truth object bounding boxes. The percentage of
recalled bounding boxes are defined as the coverage. A box is recalled if it overlaps sufficiently
with the ground-truth box. In general, relative overlap is considered but for more precise local-
ization an absolute overlap criteria is desired. We have considered an absolute overlap threshold:
the absolute positioning error should be less than 15 px along both axes. The results with differ-
ent methods on our training dataset is presented in Table 4.1. Even though we do not achieve full
coverage, rectangles near the ground truth are obtained, and using adjustments and validations
we can come closer to the actual location of the object.

The method All(x, y) signifies selecting all candidates that meet the dimensional con-
straints with a stride of x along the x axis and y along the y axis. This is the baseline and it
generates a large number of candidates but offers 100 % coverage. Grid(x, y) is an approach
that finds both global horizontal and vertical guidelines in the same manner as presented in the
previous section. The two parameters indicate the neighborhood size for local maxima detec-
tion from histograms. Edge(x, y) refers to the presented edge-based candidate generation with
non-smoothed gradient obtained from Sobel filters. Edge normalized(x,y,z) uses normalized
(smoothed) gradient with a box filter of dimension z x z. The presented results are obtained by
evaluating on the Viano2 training set. The reader can find more details about the dataset in the
experimental results section for logistics operations detection methods. Only optimal parameter
configurations are shown.

The approach from the last row offers an acceptable coverage while drastically reducing
the number of candidates generated per image. The numbers in the parentheses indicate the step
size in horizontal and vertical direction, and the filter size (where applicable).

Method Coverage Avg. nr. candidates
All(5,5) 100 % 1370k
Grid(7,7) 99.40 % 508k
Edge(5,3) 99.52 % 374k
Edge normalized (3,3,15) 98.81 % 35k

Table 4.1: Comparison of different candidate generation schemes.

63

4.6 Conclusions
This section has presented several approaches for candidate generation. Each method is

directly applicable to one of the two specific tasks: pedestrian detection or pallet detection. We
have found that gradient-based candidate generation helps in eliminating most of the irrelevant
candidates. Essential steps for this method are: edge detection from a normalized gradient map;
detecting dominant horizontal and vertical lines; grouping these lines into rectangles the respect
several constraints. These provide a list of good potential candidates. This approach has high
coverage (recall) and is also small compared to other approaches and can be generated rapidly.

64

Chapter 5

Contributions to object detection and
classification methods

5.1 Automatic image annotation by measuring compactness
In its simplest form, automatic annotation of images aims at labeling images with key-

words from a dictionary. It is strongly related to object detection but in this case the position of
the object is not required. In this section we present a proposed approach for performing label
transfer that is similar to k-nearest neighbor classification.

5.1.1 Compactness definition and interpretation
The novel part in our method is the way similarity is measured between two images. We

employ a measure called compactness. Compactness is defined on two point sets: X - data points
and C - cluster centers. It is a measure that indicates how close data points are to a set of centers.
The set of centers will represent cluster centers from training image feature descriptors. So we
distinguish between a set of data points X and the center points C and define the compactness
in the following way:

c(X,C) =
1

|X|

|X|∑

i=1

min
j
d(xi, cj) (5.1)

where j ∈ 1, K, |X| denotes the cardinality of the set X and d(x, y) is a metric defined
on the D dimensional space. The previous definition states that compactness is the sum of the
distances of each point from X to the closest point from C. Here X refers to any points in
general, and in particular it can be the same as the set of features extracted from a test image. In
our experiments we have found that the L1 distance performs best in this context compared to
the L2 or the Chi-Square metric.

A less restrictive definition uses Lp norms instead of the distance function. This is useful
in practice because it avoids extracting roots and has interesting properties.

65

c(X,C) =
1

|X|

|X|∑

i=1

min
j
||xi − cj||pp (5.2)

Note, when applying k-means on a set of points X , the objective function to minimize is
exactly the compactness of the centers and the point setX . So the following are equivalent to the
L2 norm compactness applied to the same points from which the clusters centers were obtained:
within-cluster sum of squares; the minimum sum of squares; distortion function; potential func-
tion (the literature uses a multitude of terms referring to this value).

The interpretation for such a measure involves decomposing the sum in two terms. Sup-
pose we are given a set of pointsX , and we want to find their compactness relative to some set of
centers C. Consider the following partitioning of X around each ck ∈ C (Voronoi partitioning):

Xk = {x ∈ X|k = argminj{||x− cj||}}, k = 1, |C| (5.3)

This states that the setsXk contain all the points that have center ck as the closest center to
them. Clearly the sets Xk are mutually disjoint sets and ∪Xk = X . Then the following identity
is true for compactness that uses the Lp norm:

c(X,C) =
1

|X|

|C|∑

k=1

|Xk|c(Xk, ck)

=
1

|X|

|C|∑

k=1

∑

x∈Xk

||x− ck||pp (5.4)

=
1

|X|

|C|∑

k=1

(
∑

x∈Xk

||x− xk||pp + |Xk| · ||xk − ck||pp)

Where xk are the centers of mass for the points Xk. The decomposition is true because
the partitions contain only the closest elements to ck.

The advantage of using such a measure over brute force comparison are: it is much faster
and it avoids noise due to outliers because it operates on distribution centers rather than on raw
data points. Another common alternative is distance defined on bag-of-words type histogram
descriptors. If the bag of words approach is used, then every image will be characterized by a
histogram which reflects the distribution of the closest prototypes associated to each feature. The
prototypes are k-means cluster centers and together they form the dictionary. The disadvantage
in this case is that some relevant centers for the current image may not be present in the global
dictionary. This prohibits the correct comparing of the images since important centers will be
mapped to other centers from the dictionary. Even if all the relevant centers of the image are
inside the dictionary, if two images have the same histograms, we cannot determine how close
or far they are even though there may be significant differences between them.

66

5.1.2 Label transfer for image annotation

Once the similarity measure is in place, a mechanism is needed to transfer labels from
similar images. In Varga and Nedevschi (2013b) we have introduced several method for trans-
ferring labels. All methods rely on the construction of a label histogram where the histogram
bin values are obtained from weighing the labels from the top-matching images using different
strategies.

The result of the matching procedure can be modelled as a function µ which returns
an ordered list of indexes based on the compactness between the test image descriptors and
each of the training image centers: µ(I) =< i1, i2, ..., iN >, where c(X,C(i1)) is the minimal
compactness, the one with i2 is the second smallest and so on.

We define a weight function ω : 1, N → R. Every label from the training image Iin
increments the corresponding bin in the histogram by ω(n):

h =
N∑

n=1

∑

l∈Ln

ω(n)δl (5.5)

Ln represents the labels from n-th match, more precisely from the training image Iin from the
list µ(I). These labels are available from ground-truth information G. δl ∈ RM is a vector
containing zeros on all positions except at the position uniquely associated to label l where it is
one. By changing the expression of the weight function ω different types of transfer techniques
can be achieved. In the following we present some particular cases.

In this case, every match from the list µ(I) contributes evenly to the histogram. We have:

ω0(n) = 1,∀n = 1, N (5.6)

This is the most elementary type of transfer, it can be viewed as a majority voting scheme.
It has the advantage that it eliminates those labels that only appear in a few matches. However,
if the matching technique is good, we want to give more importance to the best matches.

Rank based transfer entails weighing the best matches more and decreasing the weight
exponentially based on the rank. In this case the weight function has the following form:

ωa(n) = 2a(1−
k−1
N−1

),∀n = 1, N (5.7)

The parameter a can be tuned to obtain the best results. Of course the base of the exponent can
be any number b > 1 or equivalently we can choose a to be a′log2b. One can see that ωa(1) = 2a

and ωa(N) = 1. Note that weighing the matches equally (case w0) is a special case of this
function where a = 0. This is why at parameter testing, these two functions fall into the same
category.

Note that this gives importance to matches according to their position regardless of their
distance to the test instance. It may well be that all matches are very close, in this case the rank
is not relevant.

67

The technique presented in Makadia et al. (2008) favours the best match and the rest of
the labels are transferred based on their appearance frequencies in the training set. This case
corresponds to the following form:

ωJ(1) = 10, ωJ(n) = 1,∀n = 2, N (5.8)

The histogram values will be updated on the last step in order to take into account the
label frequencies. It is a greedy technique and thus depends on a good first match.

To take into account the compactness values cn of each of the matches, the following
weight function is defined:

ωd(n) = 2b(1−cn/c1),∀n = 1, N (5.9)

This is particularly useful where compactness values are relevant, however the first match will
always receive the same weight, i.e. because this weight function is relative to c1, it does not
treat the case where even the best match is far away from the test instance.

Histogram construction using weight functions can be easily extended to the case where
we intend to use multiple features. We begin by constructing the histogram normally for the first
descriptor type. Then we save the histogram instead of resetting the bins to zero and repeat the
process for the matches obtained from the other descriptor types. In this way every descriptor
contributes to the final histogram which will provide the annotations.

In this paragraph we will refer to an instance of the algorithm that uses a specific kind of
local feature simply as ”a method” in order to simplify explanation. In this case, the definition
for the transfer histogram becomes:

h =
∑

m

ηm
∑

n

∑

l∈Lm,n

ω(n)δl (5.10)

where the indexm refers to the method number, ηm is the weight of the methodm and Lm,n is the
set of labels from the n-th match using method m. In our experiments we have set ηm = 1,∀m,
i.e. we weigh each feature type equally. Note that the order of applying different methods is
irrelevant.

5.1.3 Algorithm overview

In this section we provide the high level steps required for the training process and for the
image annotation process. Afterwards, the effect of different parameters on the execution time
is discussed. The training involves the steps described by Algorithm 12.

68

Algorithm 12 Compactness training procedure

Output: centers from all training images.
1: for all training images In do
2: Extract local features X(n)

3: Apply k-means using K centers to obtain C(n)

4: Save centers
5: end for

We have fixed the number of clusters for the k-means algorithm to K = 20 for all our
experiments based on some preliminary tests. If multiple features will be used for annotation, it
is necessary to run the training for each feature type. Note that this way, we form the building
blocks for more complex methods that use different feature combinations and the training is
done only once for each feature type.

In order to annotate an image, the following operations from Algorithm 13 are to be
executed. If multiple features are used, then these operations are performed for each feature
type, and the equation (5.10) is used once at the end to form the transfer histogram.

Algorithm 13 Compactness label transfer

Input: Training image centers.
Output: Annotations for every test image.

1: for all test images I do
2: Extract local features X
3: Sample X to get B
4: for all training image In do
5: find c(B,C(n))
6: end for
7: Obtain the first N best matches using µ(I)
8: Transfer ground-truth labels from matches to obtain annotation using (5.5)
9: end for

5.1.4 Experimental results

In the following we present our evaluation results from our work Varga and Nedevschi
(2013b). Testing is performed on standard datasets for image annotation.

To enable comparison between methods, the protocol for evaluation follows Carneiro
et al. (2007). The different datasets are split into two disjoint sets: training set - used for ex-
tracting k-means centers; test set - for the evaluation of the method. No information about the
ground-truth labels of the test set are used when generating the automatic annotations. The au-

69

tomatically generated annotations are afterwards compared with the human given ones to obtain
metric values.

We label each image with exactly five labels. For each keyword from the dictionary that
appeared at least once in the test ground-truth, we calculate the precision and recall values. For
each label, we define the following numbers:

• lh - the number of times l appears in the test ground-truth;

• la - the number of times l was provided in an annotation by the automatic annotation
method;

• lc - the number of correct annotations with the label l.

In this setting the precision is p = lc/la and the recall is r = lc/lh. In order to obtain
a global score, we find the average precision and recall. These are obtained by averaging the
precision and recall values of all the keywords which appear at least once in the test ground-truth.
Another metric used is the number of non-zero-recalls. This is calculated as: nzr =

∑
lic>0 1.

Additionally, we introduce an indicator rarely used for evaluating annotation methods.
The F1 score is the harmonic mean of the average precision and the average recall. It enables us
to look at a single value for finding the best parameters and makes it easier to compare different
annotation methods. By taking the harmonic mean, the score is closer to the lesser value, so a
high F1 score can only be achieved with both a high precision and high recall.

We performed extensive testing on this database using different underlying features for
the matching method. The structure of this database has been described in the previous works
(e.g.Carneiro et al. (2007)). We mention only that the training set has 4500 images, and the test
set consists of 500 images, the size of the dictionary is 374. The metric values for matching
using only one type of feature, as well using multiple features are shown in Table 5.2 . The
numbers next to the feature type indicate the dimension of the descriptor vector.

To clearly show the advantage of using compactness over histogram distances we provide
test results on the Corel5k using the same features and transfer method wJ as in Makadia et al.
(2008). In addition, we provide the best results obtained using one of the proposed transfer
methods - wa refers to the rank based exponential weighing with the subscript parameter a
having the optimal value. Table (5.1) shows that in all cases compactness ensures a higher
average precision and the same or higher recall. We have used L1 metric for comparison and not
Kullback-Leibler divergence for the Lab colorspace as in Makadia et al. (2008). The proposed
weighing further improves score values boosting both precision and recall.

To find the best parameters we have performed a grid search varying several parameters
in the ranges given below. Test time can be saved because matches are obtained once for each
bag size and afterwards different transfer techniques can be applied. The results with the highest
F1 score are presented in Table (5.2). As mentioned before, we determined that L1 distance
behaves best in this context for compactness calculation. Parameter ranges used for testing are:

70

• bag size - |B| ∈ {50k|k ∈ 1, 10};
• neighbourhood size - N ∈ {5, 10, 15};
• weight function type - wa, wJ or wd;

• weight function wa parameter - a ∈ 0, 5;

• weight function wd parameter - b = 300;

• considering frequency or not - ϕ ∈ {0, 10−3, 2 · 10−3};
• number centers per image - K = 20.

The Table 5.2 contains metric values using different features on the Corel5k benchmark.
Entries are ordered based on F1 measure that guided us in deciding which method is better.
The last column shows the average execution time in seconds for a single image annotation
using a single threaded execution on the machine described in section 7.1. (’-’ signifies no
data available). Execution time is given for the best parameter combination and it depends
on bag size. Simple color descriptors behaved surprisingly well compared to different texture
descriptors. Also the low dimensionality of this feature permits a very low execution time. Color
variants of the texture descriptors perform better than gray-scale ones. The lower part of the
table contains combinations of features. This confirms that the annotation method successfully
combines multiple features and produces better results than using individual features.

We now compare our results with previous state-of-the-art results in Table 5.3. Each
percentage is taken from the indicated reference. Optimal configuration found by our tests is:
using color descriptors along with DCT63 and SIFT, with the parameters set to: K = 20, B =
200, ϕ = 2 · 10−3, N = 5, a = 3 (last line from Table (5.2)). We note that Compactness based
methods produce similar results to SML when using the same features (see DCT63 and DCT192
in Table 5.2) but using SIFT proves to be better. By efficiently utilizing multiple features, our
simple approach outperforms many methods from the literature based on the F1 score including
MBRM, SML, JEC, ProbSim. MRFA does not provide exactly 5 labels at annotation which
helps to achieve higher scores. The better results of TagProp can be explained by the fact that it
employs Metric Learning which could also be used in our context to improve results.

(a) Test image (b) Match 1 (c) Match 2 (d) Match 3 (e) Match 4 (f) Match 5

Figure 5.1: Sample matches and annotation from Corel5k
Predicted labels for test image a): water, beach, tree, people, sand. Showing only best five
matches based on SIFT features. Note that incorrect labels from match 2 (confusion between
sand and snow) get filtered out because of the transfer technique.

71

Feature Precision Recall NZR F1
JEC+RGB 20 23 110 21.39

JEC+Lab 20 25 118 22.22

JEC+HSV 18 21 110 19.38

Comp+RGB+wJ 21.98 24.38 121 23.12

Comp+Lab+wJ 21.29 24.80 123 22.91

Comp+HSV+wJ 19.33 26.94 128 22.51

Comp+RGB+w5 21.58 26.85 123 23.93

Comp+Lab+w5 22.34 25.62 123 23.87

Comp+HSV+w3 21.95 26.68 124 24.09

Table 5.1: Comparison using the same feature type

Feature Precision Recall NZR F1 exec
Gabor(12) 7.46 8.67 76 8.02 -
HOG(9) 11.22 11.57 85 11.40 -
Law(9) 13.82 17.56 105 15.47 -
color HOG(36) 14.36 17.57 109 15.80 -
WLD(48) 16.99 18.42 108 17.67 1.83
SIFT(128) 17.00 24.94 122 20.21 -
CSIFT(256) 19.49 24.51 120 21.72 -
color(9) 22.71 27.06 128 24.69 1.39
DCT(63) 22.32 28.27 129 24.95 0.48
DCT(192) 22.82 29.02 129 25.55 5.28
SIFT-OCS(384) 23.75 31.23 140 26.98 22.58

WLD + color(57) 26.45 27.88 120 27.15 4.4
SIFT + WLD + color(441) 30.19 31.99 131 31.06 18.23
SIFT + DCT63 + color(456) 30.15 32.17 133 31.13 20.62

Table 5.2: Compactness based annotation results using different feature types on Corel5k

Some general remarks can be made about the influence of different parameters on the
metric values. We analyse results from Corel5k in detail. It is possible that the behaviour on
other databases is different. The effect of each parameter is analysed by fixing the other ones to
their optimal values. Multiple cases are considered where necessary.

Increasing the bag size B has moderate effect on score values. This can be studied using

72

Method Precision Recall NZR F1
MBRM - Feng et al. (2004) 24 25 137 24.48
SML - Carneiro et al. (2007) 23 29 137 25.6
JEC - Makadia et al. (2008) 27 32 139 29.2

ProbSim - Chunsheng Fang (2009) 25.4 36.5 106 29.7
Compactness 30.15 32.17 133 31.13

MRFA-grid - Xiang et al. (2009) 31 36 172 33.31
TagProp - Guillaumin et al. (2009) 32.7 42.3 160 36.8

Table 5.3: Comparison with state-of-the-art Corel5k

Prediction people swim-
mers pool wa-
ter athlete

stone pillar
temple people
sculpture

people outside
museum dance
tree

cars tracks
formula wall
straightaway

sky mountain
tree snow sky

Ground-
truth

people pool
swimmers
water

pillar temple
sculpture
stone

tree people
dance outside

cars formula
tracks wall

clouds moun-
tain sky snow

Table 5.4: Sample annotations using color+DCT63+SIFT from Corel5k

Figure (5.2). Score values increase and oscillate, and in some cases reach a maximum for fairly
low values of B. Because bag size linearly influences the execution time, lower bag size values
such as 100 or 200 can be utilized. This is practical because it achieves faster execution while
maintaining near-optimal performance. The oscillating behaviour is due to the errors introduced
from sampling.

We now study the influence of neighbourhood size N . Better results were obtained using
smaller N values. This may be due to the relatively small size of the database, so most of
the images have few good matches among the training instances. We have found that N = 5
produces best results for individual features and on some occasions N = 10 for multiple feature
case. Further fine-tuning could involve experiments considering N ∈ {1, 2, 3, 4}. This also
demonstrates that the matching technique is efficient because the first few matches provide good
labels to transfer.

Figure (5.3) contains metric values using different transfer techniques. We have associ-
ated a = −2 to JEC-type transfer and a = −1 to distance-based transfer. We have found that in
almost all cases, weighing based on rank performs best. In some cases we obtain better results
with ωd or ωJ , but the general recommendation is ωa. The scores with a = 0 are almost always
lower than the optimal scores obtained using a = 3 or a = 4. Overall tendency here suggests

73

to accord significantly more importance to the best match. To provide a more encompassing
overview Table (5.5) shows score values using only RGB features. Every row corresponds to a
constant bag size and every column contains a different transfer technique.

If we consider frequency information, it can increase overall performance (F1 score).
However, this almost always entails an increase in precision and a decrease in recall and NZR
values. The reason for this is that favouring the more frequent terms reduces the chance to
annotate with rare labels. The influence of the frequency was tested using 3 different values:
zero influence, minimal influence setting ϕ = maxfl as suggested, and twice the previous value.
The second case gives higher F1 score in general.

Computation time varies in accordance with the time complexity formulas derived in
section 5. It is linear with respect to feature dimension and also with respect to bag size. These
two parameters can control the execution time. Modifying the bag size has only minor negative
effects on annotation performance. Even though the IAPR-TC12 and ESP-game datasets are
much larger annotation time still remains fairly low due to the optimizations mentioned (halting
calculation when distance exceeds the current N -th maximum).

50 100 150 200 250 300 350 400 450 500
28.5

29

29.5

30

30.5

31

31.5

bag size B

F
1

Figure 5.2: The influence of bag size - color+DCT63+SIFT

−2 −1 0 1 2 3 4 5
23

24

25

26

27

28

29

30

31

32

transfer type ω
a

F
1

(a) multiple features

−2 −1 0 1 2 3 4 5
14
15
16
17
18
19
20
21
22
23
24

transfer type ω
a

F
1

(b) RGB only

Figure 5.3: The influence of transfer type

74

Table 5.5: The influence of parameters on F1 score

The IAPR-TC12 image collection consists of 20,000 still natural images taken from lo-
cations around the world and comprising an assorted cross-section of still natural images - see
Grubinger et al. (2006). The same images are used from the IAPR-TC12 database as those in
Makadia et al. (2008) in order to compare results in a correct manner. This database is larger, the
training set numbers 17825 images and the test set contains 1980 images with 291 labels. The
image annotations and test/training split is obtained from the files located at the web-page 1.

The metric values are calculated using all the labels from the ground-truth. This is the
right way to obtain the number of correct labels however recall values will be lower. This is so
because we only provide 5 labels, and in cases where in the ground-truth there are more than 5,
we inevitably end up marking some labels as not recalled.

We provide some sample annotations for this dataset in Table 5.8. Notice that a lot of
images have much more labels than 5. The results for this database (Table 5.6) again indicate
that fairly good results can be obtained using simple color descriptors. However, SIFT features
outperform other features mostly by reaching an F1 score of 32.13. It can be seen that the
combination of different features is more successful on this database. Average precision value
increases with 11%. Note that combining features results in lower recall and higher precision
values. This is natural since more features provide more ”opinions” about the correct label and
the consensus tends to reflect the truth.

The comparison made in Table 5.7 shows that Compactness obtains much better precision
than MBRM and JEC (by 15%). Recall and NZR values are lower, but we mention here that
using JEC-type transfer similar values were obtained as in Makadia et al. (2008).

1Makadia annotation files

75

http://www.cis.upenn.edu/~makadia/annotation/

Feature Precision Recall NZR F1 exec
color(9) 23.89 23.63 216 23.76 2.0

DCT(63) 25.24 24.64 225 24.94 6.3

SIFT(384) 31.82 32.45 245 32.13 17.0

SIFT+DCT+color 42.9 22.6 228 29.6 44.0

Table 5.6: Compactness based annotation results using different feature types on IAPR-TC12

Method Precision Recall NZR F1
MBRM - Feng et al. (2004) 24 23 223 23.48

JEC - Makadia et al. (2008) 28 29 250 28.49

Compactness 42.9 22.6 228 29.6

TagProp - Guillaumin et al. (2009) 46.0 35.2 266 39.88

Table 5.7: Comparison with state-of-the-art IAPR-TC12

Prediction view river
jungle middle
cloud

pool people
woman tree
man

building front
ornament
trouser jacket

bike country
helmet side
short

sky mountain
cloud desert
bush

Ground-
truth

cloud hill
jungle middle
palm range
river view

chair man
people pool
woman

building col-
umn front
jacket orna-
ment person
trouser

bike cap coun-
try cycling cy-
clist hand hel-
met jersey rac-
ing road short
side

cloud desert
mountain
shrub sky

Table 5.8: Sample annotations using color+DCT63+SIFT from IAPR-TC12

The ESP dataset is the result of an experiment involving collaborative human annotation.
The subset of pictures used is the same as in Makadia et al. (2008). More exactly: 19659 training
images, 2185 test images, annotated with 269 different labels. An advantage of this set is that it is
a result of an agreement between multiple annotators, so annotations are not biased by individual
preference.

76

Table 5.9 contains results using a limited set of features and their combination. Five
sample annotations are provided in Table 5.11. In this case WLD texture descriptor and color
descriptors collaborate well. This may be so because in this set, texture can discriminate in-
stances better than in previous datasets. To enable comparison with the existing methods, we
summarize other results in Table 5.10.

Feature Precision Recall NZR F1 exec
Law-color(30) 16.36 16.07 217 16.22 2.32

WLD(48) 19.65 17.33 228 18.42 3.61

color(9) 19.73 19.28 230 19.50 1.56

DCT(63) 21.49 20.50 236 20.99 7.92

SIFT(384) 22.75 20.42 230 21.52 35.13

WLD+color 31.07 19.78 227 24.17 11.63

SIFT+DCT+color 34.67 21.29 233 26.38 39.45

Table 5.9: Compactness based annotation results using different feature types on ESP-game

Method Precision Recall NZR F1
JEC - Makadia et al. (2008) 22 25 224 23.4

Compactness 34.67 21.29 233 26.38

TagProp - Guillaumin et al. (2009) 39.2 27.4 239 32.25

Table 5.10: Comparison with state-of-the-art ESP-game

NUS-WIDE from Chua et al. (2009) is a large image dataset consisting of 269,648 im-
ages and associated tags from Flickr. This was created by a research team from the National
University of Singapore, who also provide tags for 81 concepts. It is suitable for testing label
transfer annotation algorithms. We have obtained this dataset by downloading the images us-
ing the provided URLs, however 36515 images are either missing or are blank which can be
detrimental for annotation precision.

We have carried out experiments using the proposed color descriptor and we have com-
pared the obtained results with the NUS-WIDE Lab histogram based k-NN annotation baseline
from Chua et al. (2009). The only difference between the two methods is the distance calcula-
tion. In the first case we have used compactness and in the second case the L1 distance between
global Lab histograms as in Chua et al. (2009). We could not directly use the feature vectors
provided with the dataset because they are global feature vectors and compactness operates on
local features, but the underlying feature type is the same. For every test image, we generate
5 labels. If the ground truth information specifies n labels, we evaluate the performance on the

77

Prediction people sky
crowd tree
blue

man black dog
grass tree

coin gold
round circle
money

sky blue
people tower
building

old man shirt
glasses book

Ground-
truth

crowd man
people pole
sky tree

black dog
grass green
guy man run
shoes white

circle coin
gold old round
square

blue building
people sky
tower

book glasses
green hand
man old shirt

Table 5.11: Sample annotations using SIFT from ESP-game

Figure 5.4: Precision values for each concept and MAP on the NUS-WIDE dataset

first m labels, where m = min(5; n). We present the annotation performance in Figure 5.4. It
is given in terms of precision for each concept and in terms of mean average precision (MAP).
Concepts with more training examples - such as clouds, person, sky - have a significantly higher
precision value for both methods. The k-NN based method has more concepts with non-zero
precision and performs better for some concepts with more training examples. However, for
most concepts compactness provides a higher precision. The MAP obtained with compactness
is of 6.21 in comparison with 4.8 corresponding to the k-NN based classification algorithm.

78

5.1.5 Conclusions
We have shown that compactness is a relevant measure to find similar images from a

training dataset to a given query image. We can transfer labels from the training images to an-
notate the input image. The label transfer mechanisms combined with the compactness measure
were compared to best-performing approaches and achieved competitive results on several an-
notation benchmarks. This work has been published and recognized in Varga and Nedevschi
(2013b).

79

5.2 Detection methods for automated logistics operations

The work presented here is part of the PAN-Robots project described in PAN-Robots
(2013) whose aim is to create an automated logistics environment. Installation and maintenance
of such an environment is costly and time consuming. Thus, one of the main goals of the project
is to ensure this with low installation time and costs.

Throughout this part we will use the following terms: AGV - Automated Guided Vehicle
- refers to automated forklifts for logistic operations; operation point - 3D position of the center
of the frontal view of the pallet or the future position of the unloaded pallet; load handling -
operations pertaining to loading or unloading of palletized goods by the AGV.

The automated load handling system is required to perform accurate pallet detection and
operation point estimation. It must also provide the orientation of the pallet. The input of the
system consists of a pair of images, an operation point position request, information about op-
eration type (the number of pallets, the level, number of reference points, storage type), pallet
dimensions, 3D static map. During loading and unloading operations, the AGV travels to the
operation point and stops at a distance of approximately 2.5 meters. At this position the sys-
tem must provide the position of the pallets to enable corrections to AGV path. As the AGV
approaches the palletss the positions of the pallets are updated online up to a certain distance of
approximately 1.8 meters.

For loading and unloading operations, the system must detect and provide the 3D position
of the pallet or pallets with an accuracy of: 5 cm (at 1 std. dev.) and 1 deg (at 1 std. dev.) at a
distance of 2.5 m from the pallets; 1 cm (at 1 std. dev.) and 1 deg (at 1 std. dev.) at a distance of
2 m from the pallets.

The two main components of the system are the sensors and the processing unit. We em-
ploy two Manta G-223 NIR cameras mounted in canonical horizontal configuration (displaced
horizontally and facing the same way). The resolution of the cameras is 2048px by 2048px. The
cameras are equipped with Schneider Cinegon lenses with a focal length of 4.8mm and F num-
ber 1.8. An auxiliary light source comprised of several LEDs is positioned between the cameras.
The cameras are mounted on the AGV behind the forks and are lowered on demand to grant
view of scene in front of the forks.

The processing unit consists of an industrial PC ADLINK MXC-6301 which is a high-
performance fanless embedded computer integrating a 3rd generation Intel Core i7 processor
and QM77 chipset to provide powerful computing and superior graphic performance. The AGV
provides a constant frame rate trigger to acquire images from the cameras. When this was not
an option - as in our laboratory - we have used an Arduino Uno microcontroller for synchronous
triggering of the two cameras. In the following we demonstrate that our current camera setup
can provide the accuracy needed.

80

5.2.1 Pallet detection and position estimation

In this section we describe an original method for detecting pallets for automated logistics
operations. This is clearly a specific case of object detection where the visual appearance of the
object is relatively simple, although variation and lighting conditions make this task difficult.

The other challenge is that the scenario requires precise 3D localization which means that
the detection must be precise. There is also a need for depth information. Our proposed system
performs detection and depth estimation separately.

Precise pallet detection and position estimation is required for automating logistic opera-
tions. This enables accident free loading and unloading operations of pallets. Pallets are wooden
supports with standardized dimensions. They are grippable from each side although usually the
shorter side is employed. Vision-based approach is possible for such a task.

A pallet detection system is required to produce detections in an industrial environment.
So it must be robust to lighting condition changes, and it must be able to operate in dark envi-
ronments. In order to help the loading procedure, it must be accurate. Fast detection is required
for increased productivity.

Our proposal is to use several relevant features for pallet detection. The first step is to
adjust the exposure time of the cameras by measuring the average intensity in the input images.
This value must be in a desired interval, and the camera exposure is changed based on a feedback
loop for this purpose.

The second step is to select a list of candidates. Here we employ Algorithm 11 from the
previous sections to generate candidates based on edge information. This quickly reduces the
number of possible positions to check for pallets but still does not provide us with final detections
since there are many false positives present in the list.

Features are calculated for each candidate and the resulting descriptor will be the con-
catenation of the different types of features: edge density along the defined border regions,
normalized pair differences signature and the LBP histogram. An ensemble classifier is applied
on the calculated features and the final detections are obtained by performing a non-maximum
suppression.

Algorithm 14 Pallet Detection palletDetect(I)

Input: input image I , classifier model M
Output: detected pallet bounding boxes

1: Preprocessing
2: candidates = candidatesEdge(I) with 11
3: X = [size(candidates)][D]
4: for i = 1 : size(candidates do
5: crop I2 = I(candidatesi)
6: calculate edge features in E = edgeDensity(I2) using 5
7: calculate npd features in F = npd(I2) using 3
8: calculate lpd features in H = lbpHist(I2) using 4
9: X(i, :) = [E,F,H]

81

10: end for
11: detections = []
12: for i = 1 : size(candidates do
13: si = predict(X(i, :)) using 9
14: if si > θ then
15: detections.add(candidatesi)
16: end if
17: end for
18: NMS(detections)
19: return detections

The non-maximum suppression module is responsible for eliminating overlapping detec-
tions with low confidence. It is common for detection methods to return multiple overlapping
detections around the true position of the object. Our policy is to have low threshold for accept-
ing detections as positives i.e. having θ form the previous algorithm set to a negative value, e.g.
θ = −10. We also tolerate slight deviations from expected positions, size and aspect ratio for
pallets.

For each bounding box pair that overlap more than θx along the x axis and θy along the
y axis the box with the lowest confidence is eliminated. Small overlaps are tolerated since close
pallets can appear to superimpose near the edges due to small positioning errors. A low accept-
ing threshold is set for the classifier, in order ensure that even detections with low confidence
are found. Since the number of pallets that are needed to be detected is known a priori, this
information can be used to retain only the most confident detections.

Several other enhancements can be made to the detection windows. These options are
enabled in most cases. Corrections include: enhancing the scores of rectangles close to the
center of the image that lie in specific regions where the pallets are expected to be; enhancing
the scores of pallet pairs that lie next to each other along the x axis; enhancing the scores of
rectangles that have correct aspect ratio.

The rectangle that indicates the position of the pallet in the left image is the starting
point for the plane fitting procedure. All pixels corresponding to the pallet’s wooden part and
excluding the pockets are reconstructed by the stereo module to obtain a set of 3D points. A
RANSAC approach is applied by fitting multiple plains on only a subset of the points. Each
plane is scored based on the number of inliers, the close points to the plane. Parameters of the
method are: size of the subset: 5 points; number of trials: 100; threshold for inliers: 2 (disparity
values). The distance to the central point situated on the pallet is reconstructed with the disparity
value obtained from the fitted plane. This provides a more robust estimation and also gives
subpixel disparity values.

Pallet orientation is estimated by averaging distances along a vertical stripe and left and
right extremities of the pallet. It is more precise and stable than using the normal vector of the
plane. Orientation of the pallet is needed only along a single axis.

82

5.2.2 Methods for treating unloading operations

Unloading operations require the target position for the place of one or two pallets. We
define the unloading cuboid as the cuboid in 3D space which represents the empty area in front
of the AGV bounded by obstacles on the left and right and the floor on the bottom. Our aim is to
detect this unloading cuboid. An error is signaled if for some reason the dimension of the cuboid
is smaller than the dimension of the pallets that are to be unloaded.

Rack storage is comprised of poles holding up shelves at different heights. We start by
detecting the structure of the rack. This can be obtained from the disparity map. The poles
and the support for the pallets must be at roughly the same distance from camera because the
approach of the AGV is almost perpendicular to the rack. We extract the disparity corresponding
to the main fronto-parallel object from the scene. We call this the principal disparity d∗.

The principal disparity is taken to be the largest local maximum from the disparity his-
togram above a certain minimum threshold value.

d∗ = arg max
d>dmin

{h(d), d ∈ N(d)} (5.11)

where h is the disparity histogram. This definition takes into account the following considera-
tions. It is a local maximum because it must appear frequently in the image. It is the largest
local maximum because we want to consider the closest fronto-parallel object. We must ensure
that the disparity is higher than a limit because we want to eliminate cases where the background
walls have a larger appearance frequency. This limit is calculated from the maximal admissible
distance to the rack (around 3 meters).

Once the principal disparity is determined, we filter the disparity image and retain only
the disparity values that are close to the principal disparity and ignore the rest of the depth map.
We then construct vertical and horizontal projections of the non-zero elements.

D∗(x, y) = abs(D(x, y)− d∗) < 5 (5.12)

D∗x =
∑

y

D∗(x, y) (5.13)

D∗y =
∑

x

D∗(x, y) (5.14)

These projections provide us with the necessary information to delimit the free zone in
front of the camera. Columns and rows with high projection values in D∗x and D∗y respectively
mean the presence of the rack. We start from a point located in the middle of the region of
interest of coordinates (x0, y0) and travel in three directions to find the left, right and bottom
limit to the open space available.

The coordinates of the left limit in pixel coordinates is xleft and it is first value x left to x0
for which the vertical projection D∗y(x) is above max(h) ∗ 0.8. The value of xright is determined
in the same manner in the other direction. For ybottom we use the horizontal projection D∗x(y).

The points (xleft, ybottom) and (xright, ybottom) can be reconstructed using the principal

83

disparity d∗ to obtain the real world coordinates of the corners of the unloading cuboid: (Xleft,
Yleft, Zleft) and (Xright, Yright, Zright). The pallets must be placed inside the cuboid on the
level of Yleft. The value of Yright should be very close to Yleft otherwise we signal an error. The
pallets must be placed next to the closest pole. This is the left pole if |Xleft| < |Xright| otherwise
the right pole. All the presented operations are illustrated in Figure 5.5 for a sample case. The
image contains in the top: disparity histogram and the limits of the unloading cuboid drawn on
the input image; bottom: disparity image with principal disparity highlighted, the projections
and the limits of the unloading cuboid are overlayed.

Figure 5.5: Unloading operation for rack - visualization of processing steps

Block storage - ground level
It is required for scenarios where the unloading operation takes place in a block storage

on ground level. This helps to determine the target position of the unloaded pallets based on
markings on the ground. We have developed a module that tackles this specific task. The main
tool employed in this process is the Hough transform Hough (1962); Duda and Hart (1972) for
finding the important lines in the input image.

Since stereo reconstruction is not very reliable on the floor region, both images need to
be processed in order to have stereo information. We start by performing a standard Hough
transform for line detection. The input image is a linear combination of the edge image and the
original intensity image. The importance given to the edge image is 0.95 while for the intensity
image it is 0.05. The reason for this is that we want to detect bright lines only. The bin size
for angles is set to 1 degree. We locate the local maximum in the Hough accumulator using a
neighborhood of 5. The left line from the floor marking is obtained by finding the line with the
largest angle ∈ [50, 70] degrees. We find the middle horizontal line through the region of interest.
This line must also lie close to the middle of the region of interest. The position from the top

84

of the region of interest must be [90, 150]. The right line from the floor marking is obtained by
finding the line with the largest angle ∈ [290, 310] degrees.

After having the three main lines for the floor marking, we can extract the intersections.
Name the intersection between the left line and the middle line point Al for the left image and
the other intersection as point Bl. For the right image we define Ar and Br analogously. We
can reconstruct the 3D position of these points by using the differences Al − Ar and Bl − Br.
Alternatively, we can operate with the disparity values from the stereo matching algorithm.

Figure 5.6 illustrates edge map and the 50 most important lines obtained via Hough trans-
form in green for a sample case. In blue are the lines of the actual floor markings. Red crosses
indicate the intersection points. The edge image is noisy because of light reflections from the
floor.

The position of the pallets can be found by knowing their dimensions and placing them at
a certain distance from each floor marking. Note, that currently we are assuming that the AGV
is roughly facing the floor markings and that the middle line is approximately horizontal.

Figure 5.6: Unloading operation ground level - output for debugging

Block storage - stacking

For this case we use most of the ideas from the rack case. However, the unloading cuboid
must be on top of the block storage. In this case we pick xleft and xright differently. Define xleft
as first value x left to x0 for which the vertical projection D∗y(x) is below max(h) ∗ 0.05. This
ensures that pallets are placed on top of the block storage. Figure 5.7 shows a sample scenario
for this type of operation. The image contains in the top: disparity histogram; limits of the
unloading cuboid drawn on the input image; bottom: disparity image with principal disparity
highlighted, the projections and the limits of the unloading cuboid.

85

Figure 5.7: Unloading operation for block storage - visualization of processing steps

5.2.3 Experimental results

This section provides a quantitative evaluation of the proposed modules. These evalua-
tions are performed on manually annotated datasets. We consider the problem of pallet detec-
tion to study the effectiveness of candidate generation schemes and the newly introduced feature
types.

Evaluation is performed on images acquired from a real warehouse from Viano, Italy. All
methods are trained on a training set called Viano2 and evaluated on a separate test set Viano2
or Viano3-5. All ground truth bounding box positions were manually determined by inspecting
the images and marking pallets as rectangles.

Since all evaluation metrics depend on determining whether or not two rectangles overlap
sufficiently, we state precisely what we consider as an overlap. Usually, for object detection
intersection over union (PASCAL VOC criteria) is used to determine overlap. A relative overlap
does not penalize absolute differences so severely for large objects. This is not desirable in
applications with strict requirements. Another remark is our input images have a large resolution
of 2048x2048 pixels, so 10-50 pixel differences are only small changes in position.

For this reason, we adopt an absolute overlap system instead of the traditional relative
overlap. We define the absolute positioning error along the x axis Ex as the difference between
the union and overlap of the intervals along the x axis of the two rectangles. Ey, The absolute
positioning error along the y axis is defined analogously. We consider an overlap a precise
match if Ex ≤ 15 and Ey ≤ 15; and a normal match if Ex ≤ 50 and Ey ≤ 50. Our overlap
measures are more strict than the relative overlap of the pascal VOC measure because of the
system requirements. Considering that typical pallet size is 500x100 pixels, a 50x50 pixel area
is only 5 percent of this. A precise position amounts to an error of 7.5 pixels ≈ 1.5 cm using

86

our hardware setup. Note, that the error measures the difference at both extremities, and thus it
is roughly twice the error of the position of the center of mass. But by measuring overlap, we
assure a better matching between the ground truth and the prediction rectangle.

We evaluate the detection accuracy of different approaches for pallet detection. All clas-
sifier models are trained on the Viano2 training set and evaluated on two different test sets: test
set Viano2 which is somewhat similar in appearance but different to the training set having been
acquired in the same recording session (this dataset contains the highest number of annotated
pallets); and test set Viano3-5 which originates from several separate recording sessions. The
second test set is more challenging and contains mostly difficult cases including over/under-
exposed images; heavy glare; light artifacts. The composition of the sets is as follows: the
training set contains 467 images and 891 labeled pallets (there can be zero or more than one
pallet in each image); the test set Viano2 contains 7124 images and 9047 labeled pallets; test
set Viano3-5 contains 224 and 356 labeled pallets. See Table 5.12 for a centralized view of the
numbers presented here.

name nr. images nr. pallets nr. negative images
Viano 2 training set 467 891 0

Viano 2 test set 7124 9047 1802
Viano 3-5 test set 224 356 44

Table 5.12: Composition of datasets acquired from Viano

Table 5.13 shows the detection accuracy on the two test sets using different configura-
tions. Evaluation is performed on two test sets and enforcing two overlap criteria. The effect
of adding new feature types is evaluated. We present test results using a boosted classifier with
100 and 1000 weak learners respectively. The number of negatives signifies the number of neg-
ative examples sampled from each training image during the learning phase. The training set
can contain more than 1 million examples since positive samples are taken near the ground truth
bounding boxes and negative samples are selected randomly from other zones. If we weigh the
error on positive instances more by ω times, we can obtain a more precise localization.

Even though the shorter npd-linear feature has a good accuracy on the Viano2 test set, it
performs worse on the harder test set. This is a possible case of overfitting since the training and
test set from Viano2 are similar. Clear improvements can be seen with the new features and each
additional feature improves the detection accuracy. Missed detections arise when the images are
too dark, when the pallets are not fully visible or when false detections appear due to glare.

87

Viano2 Viano3-5
Features normal precise normal precise

100 weak learners + 100 negatives per image
integral ftrs. 79.0 % 64.2 % - -
npd 80.6 % 65.1 % 80.9 % 40.1 %
npd-linear 84.6 % 77.1 % 74.2 % 30.3 %
npd+edge 90.3 % 83.4 % 81.7 % 45.5 %
npd+edge+lbp 97.1 % 90.2 % 87.7 % 46.0 %
npd+edge+lbp + ω = 10 97.7 % 92.6 % 87.7 % 70.5 %

1000 weak learners + 1000 negatives per image
integral ftrs. 92.0 % 75.4 % 77.0 % 38.0 %
npd+edge+lbp 100 % 94.9 % 93.5 % 65.7 %
npd+edge+lbp + ω = 2 98.9 % 95.4 % 91.9 % 68.8 %

Table 5.13: Detection accuracy for multiple feature configurations

Viano2 Viano3-5
Configuration normal precise normal precise

100 weak learners + 100 negatives per image
old features - depth 2 79.0 % 64.2 % - -
npd - depth 2 95.4 % 91.4 % 87.6 % 55.9 %
npd - depth 3 97.7 % 92.0 % 88.2 % 68.8 %
npd - depth 4 98.3 % 93.7 % 90.5 % 72.2 %
npd - depth 5 98.3 % 94.7 % 93.8 % 78.1 %

1000 weak learners + 1000 negatives per image
old features - depth 2 92.0 % 75.4 % 77.0 % 37.9 %
npd - depth 2 100 % 94.7 % 93.8 % 57.3 %
npd - depth 5 98.9 % 94.9 % 97.5 % 64.9 %

2048 weak learners + 3 bootstrap rounds
aggregate features - depth 2 99.4 % 46.3 % 85.4 % 25.8 %

Table 5.14: Detection accuracy for decision trees with different depths

In Varga et al. (2015) we compare the newly introduced pallet detection module with ag-
gregate features to the previous approach from Varga and Nedevschi (2014). The detector that
operates with npd features is also compared. The results with different detection module config-
urations are presented in Table 5.14. The previous method that uses boosted decision trees and
integral features is shown as baseline for comparison. We also evaluate the influence of increas-
ing the depth of the decision tree and our newly introduced features normalized pair differences

88

(npd). According to the results, increasing the depth not only improves overall performance, it
also has a positive effect on the detection accuracy for precise matches. This is essential for a
more precise pallet localization. Increasing the depth only slightly increases training time and
the execution speed for prediction. However, the number of parameters increases exponentially,
the possible number of nodes is equal to 2d+1−1, where d is the depth of the tree. This is is why
we stop at depth 5. Increasing the depth of the decision trees also runs the risk of overfitting the
training set. This is avoided by checking the error on an independent test set.

operation type nr. op. nr. successful op. percent
loading - rack 103 103 100 %

loading - block 69 69 100 %
unloading - rack 82 82 100 %

unloading - block 69 67 97 %
total 323 321 99 %

Table 5.15: Field test results from Viano

Processing step Execution time [ms]
Image rectification and undistortion 3

Candidate generation 10
Feature calculation 100

Classification 30
Non-maximum suppression and enhancements 0

Reconstruction and plane estimation 10
Total time 153

Table 5.16: Typical execution times for each processing step

5.2.4 Conclusions
The work presented in this part has been implemented and tested on two sites: a ware-

house in Viano owned by Elettric80; a plant/factory in Bilbao owned by Coca-Cola Iberian
Partners. Scientific results have been published during the system development in multiple pub-
lications: Varga and Nedevschi (2014) - describes the initial system, Varga et al. (2015) - shows
modules used for unloading operations, Varga and Nedevschi (2016) - focuses on introducing
the npd features for more accurate detection.

The tests show that the system is both accurate and relatively fast. System tests indicate
that it is capable of providing precise enough information to the AGV for performing operations
correctly. More testing and refinement is required before the system is fully ready.

89

5.3 Pedestrian detection methods

The current section presents different versions of pedestrian detection methods proposed
by us. We start from the basic idea which is to use only a limited number of pedestrian scales
and to avoid image resizing operation. Our system has been rewritten and optimized to attain
over 20 frames per second execution time in the final version. It has also been extended with
multiple channel types to achieve state-of-the-art results.

5.3.1 Pedestrian detection using reduced number of scales

Proposed solution

The main idea behind our approach for pedestrian detection is to combine successful
candidate generation and to avoid unnecessary resize operations on images. The proposed RoI
selector from section 4.2 can be applied to a pedestrian detection method to reduce the execution
time. In general, approaches to pedestrian detection with sliding window require image resizing
to detect pedestrians at different scales. We opt for a different route by performing all detection
steps on the original image without resize operations. As demonstrated in the paper Varga and
Nedevschi (2013a), this leads to a theoretical speed-up of up to a factor of 4.

For such an approach, the features must be calculable on variable sized detection windows
in order to account for the different scales. Integral channel features are sums of rectangular
regions of the image, proposed in Dollar et al. (2009a). If we normalize the features by their
area, we obtain a scale independent representation of these features. Certain channels such as
gradient magnitude are not scale invariant, i.e. regional sums of larger regions are not equal to
regional sums of resized images (even if features are normalized by the size of the region).

We have chosen as features the same ones that have been established to perform the
best for the task of pedestrian detection in Dollar et al. (2009b); Dollár et al. (2010). More
precisely, the image channels on which we perform summations are: the three channels of the
Luv image, gradient magnitude, 6 gradient orientation bins. This results in a total of 10 channels.
Unfortunately, the descriptiveness of the HOG (Histogram of Oriented Gradients) features also
means that they are not scale invariant, meaning that normalising by the area does not produce the
same result as resizing the image and then performing histogram binning again. For this reason,
we opt to define a few canonical scales and to train a separate classifier for each scale. Having
separate classifiers for each scale eliminates the problem of scale invariance but introduces extra
work for training, maintaining and predicting with multiple classifiers.

Our proposal is to work with only a limited number of scales. Standard approach is to
split octaves into upto 12 parts and perform detection on each intermediate scale. Of course this
leads to a loss in the tightness of the bounding boxes resulting from detection.

The idea behind limiting the number of scales is to decrease the computation time. What
scales should we choose? Each scale is in direct correspondence with a bounding box height.
In our initial publication from Varga and Nedevschi (2013a) we have selected target bounding
box heights 64, 128, 256 and 512. Note, this corresponds to canonical scales of: 0.5, 1, 2

90

and 4 for a 128x64 detection window. These scales have been used in the literature in numerous
works. However a sparse scale space with only a few target heights has not been explored before.
A more principled method for choosing bounding box heights was developed in the followup
paper Varga et al. (2014) - detailed in the next part. Classification is performed by a boosted
classifier with two-level decision trees. In the earlier paper the Real AdaBoost implementation
from OpenCV library is employed with 1000 weak learners.

Algorithm 15 formalizes the ideas presented above and describes the steps needed at de-
tection time to obtain pedestrian bounding boxes. It is important to note, that feature calculation
on the integral images is performed fewer times because of the reduced number of RoIs as op-
posed to calculating them for every region (step 5). This algorithm requires an already tuned
region of interest selector and a trained classifier.

Algorithm 15 Pedestrian detection method with RoI selection

Input: Input image.
Output: Pedestrians as an array of rectangles and confidence values.

1: Calculate channels for integral channel features.
2: Apply RoI selection using Algorithm 10.
3: Set detections = ∅
4: for all RoIs do
5: Calculate the features from within the RoI
6: Classify the features using the appropriate classifier
7: if confidence > θ then
8: Add the RoI to the detections list along with the confidence value
9: end if

10: end for
11: Apply pairwise-max on detections

During the execution of the algorithm, the integral images for each image channel are
calculated and stored (line 1). New we allow the RoI selection to filter out the majority of the
candidates (line 2). The detection process continues only on the set of bounding boxes that are
retained after the previous step (lines 4-10). As is usual, there are multiple detections clustered
around the true object, this is resolved by performing a pairwise maximum selection based on
classifier score (line 11).

Experimental results

We have evaluated our proposed detection method with RoI selection on the INRIA
pedestrian benchmark. The training set contains 613 pictures with pedestrians, each picture
can contain more than one pedestrian. The annotations are in the form of bounding boxes for
each pedestrian. The negative set numbers 1218 images that do not contain pedestrians. It is
one of the most widely used datasets for pedestrian detection evaluation. The initial negative

91

samples for training the classifier are obtained by sampling each of the negative example images
randomly for 10 bounding boxes of the required height. Also, a random resizing is applied be-
fore cropping the negative image to match the resizing operations from the positive examples.
This is a common practice and it is referred to as bootstrapping.

First we discuss the results for tuning the parameters of the RoI selector. To measure the
effectiveness of this part we establish two important criteria: speed-up and coverage. Speed-up
is defined as the ratio between the total number of all possible candidates and the number of
candidates remaining after RoI selection. This factor roughly reflects the expected speed gain
since the execution time of the detection method depends linearly on the number of candidates.
The coverage measure can also be called recall, it is the percentage of the positive examples
that are retained. An ideal RoI selector should have 100 % coverage and a high speed-up factor
to be effective. Also, the time consumed in during selection should be low enough to merit the
introduction of this module. The results for different parameter settings is presented in Table
5.18.

This significance of the parameters are: type - filter applied for edge detection; σ - vari-
ance for Gaussian filtering; t1 - threshold value for top detection; t2 - threshold value for bottom
detection. For Canny edge detection the parameter t1 is the lower threshold and the higher is
equal to 3t1.

By analyzing the results, we can draw the following conclusions. More smoothed images
yield smaller coverage values because gradient magnitudes become smaller and this leads to
rejection of more rectangles. This, however, simultaneously increases the gain in speed at the
cost of false rejections. As expected, one must choose the appropriate kernel type and parameters
by adjusting a trade-off between speed-up ratio and coverage. Also, the execution time of the
edge detection method must be taken into consideration. For example, Canny edge detection
takes a longer time.

The influence of the RoI selection module on the whole detection algorithm is illustrated
by comparing the execution time of the whole system with and without this module. We can
view typical execution times for small images, large images and the whole test set in Table 5.21.
The general effect of introducing the module is a tenfold speed increase. Following standard
procedure, we check the performance of each variant and plot the average miss rate versus
false positives per image. A figure illustrating the table:roc curve for three variants is given
in Figure 5.8. The figure shows no significant degradation in performance after introducing the
RoI selection module.

Test unit Sobel Canny No RoI
Test set 5 minutes 4 minutes 55 minutes

370x480 img 0.192 seconds 0.182 seconds 1.91 seconds
960x1280 img 1.032 seconds 2.895 seconds 33.02 seconds

Table 5.17: Comparison of execution times

92

Type σ t1 t2 d speed-up coverage
Sobel 0 100 2 32 46.52 0.98

1 100 2 32 161.17 0.91
2 100 2 32 430.21 0.83

Scharr 1 120 5 32 7.83 0.99
2 120 5 32 10.05 0.98

Prewitt 0 100 2 32 148.41 0.94
1 100 2 32 952.85 0.78

Canny 0 30 2 32 15.96 1.00
1 30 2 32 23.90 1.00
2 30 2 32 32.95 1.00
2 30 5 32 144.21 0.99

Table 5.18: RoI parameter tests on the training set

10
−3

10
−2

10
−1

10
0

10
1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X: 0.1619
Y: 0.3905

false positives per image

m
is

s
ra

te

Sobel
Canny
no RoI

Figure 5.8: DET curve on the INRIA test set
A sample value is emphasized near the 10−1 false positive mark.

93

5.3.2 Pedestrian detection without image resize operations

Proposed solution

Our second version for the pedestrian detection system builds upon the previous one.
Here, we only provide a short overview and state the differences. The main focus of this ap-
proach is to show how to achieve high-speed detection while maintaining detection performance
as much as possible.

One of the key ideas is to detect pedestrians with only a reduced number of heights. Usu-
ally, detecting different heights entails resizing the image multiple times (constructing the image
pyramid). This means that the number of scales is in one-to-one correspondence to the number
of pedestrian heights. Our approach is opposed to the mainstream idea of using a dense scale
space for image pyramid construction. Each image from the image pyramid is a rescaled version
of the input image and has an associated detector of a given height. Typical detectors construct
an image pyramid with up to 50-55 scales. The heights chosen here are based on statistical data
acquired from the training dataset. We apply k-means clustering to obtain the 6 representative
cluster centers for pedestrian bounding box heights. The number 6 was chosen because the de-
tection rate was acceptable. A future analysis about how the detection performance is influenced
by the number of heights will be performed. The difference compared to other sparse scale
space methods (i.e. methods that limit the number pedestrian heights to consider) is that we do
not have detection windows that are of the form a2n, instead we select the representative centers
based on the training data. Since detection performance degrades significantly at lower scales,
we may omit smaller window heights for practical applications.

The proposed detection method uses a sliding window approach with the before men-
tioned 6 fixed window heights and a constant aspect ratio. Considering an exhaustive search at
every position, scale and aspect ratio is not feasible nor necessary. In this work we opt for a can-
didate generation that accepts only candidate rectangles that have their center in the horizontal
middle stripe. This selection can be motivated by studying the spatial distribution of detection
window centers from the training dataset. This distribution has been observed on other datasets
such as the Caltech Pedestrians Dollár et al. (2012).

Each sliding window height corresponds to a pedestrian at a specific scale and has an
associated classifier. The classifiers are trained separately for each scale. Our aim is to totally
eliminate image resizing and other operations on features. This is a key difference compared
to other methods: Dollar et al. adjust the features based on scale in Dollár et al. (2010), while
Benenson et al. Benenson et al. (2012) adjust the classifier. The detection window is moved
to every valid position that is dictated by a region of interest selection method. Features are
then calculated as sums of rectangular subregions for each candidate window and classification
is performed. The sums of different image channels over a rectangular area can be calculated
efficiently with integral images. The underlying image channels are Luv color-space, gradient
magnitude and oriented gradient histogram with 6 bins. For feature extraction, we rely on a
module provided by Dollar in Dollár (2006).

Key elements of this approach that help achieve high-speed and reliable detection are:

94

• No image resizing

• Smart and fast region of interest selection (candidate generation)

• Fast integral channel features calculation

• A cascade of boosted decision trees for classification

• Reduced number of pedestrian heights

• Custom implementation of all processing modules and code parallelization

The detection algorithm follows the well established canonical pipeline. It is composed of
the following steps: preprocessing (resizing - not employed in this case, padding - when the im-
age width is not divisible by 4, smoothing), region of interest selection (or candidate generation),
feature channels extraction (Luv conversion, gradient computation, histogram bin aggregation),
feature aggregation (rectangular region sums) only on the candidate regions, classification/pre-
diction and non-maximum suppression.

An important aspect of the preprocessing step is how to treat images that do not have
width divisible by 4. Since many operations run only if divisibility is ensured, we pad the
images instead of cropping or resizing. This also helps to linearize the image in the memory.
Note, that during the training phase many cropped small images are fed as input to the feature
extractor. These result from clipping out only the pedestrian bounding boxes. This is why it is
important to treat irregular sized images carefully. We perform no image resizing, although for
larger input images this could be included to reduce the search space. Image smoothing is moved
to the feature extraction phase, and gaussian bluring is replaced by a faster triangular filtering as
in Dollar et al. (2009a).

Region of interest selection provides the candidate rectangles from which the features
are extracted and classified. It is essential to restrict the number of these candidates to reduce
the workload of the following modules from the pipeline. For this step, we have three main
options. The first option is to use all possible bounding boxes with a given stride, fixed aspect
ratio and height restricted to a set of values. The second option is to admit only the rectangles
whose centers lie in the central horizontal stripe of the image. This is a heuristic that is easy
to implement and it is deduced from the measurements from the pedestrian dataset (see section
Location-based region of interest selection). The third option is to select candidate regions based
on the edges in the image (as in Varga and Nedevschi (2013a)). Here we opt for the second
approach because it is sufficient and assures high coverage. The selected pedestrian heights are:
60, 92, 136, 212, 340 pixels. The stride is set to 4 or 8 pixels, the fixed aspect ratio is 0.43 (width
over height).

For feature extraction we rely on the Integral Channel Features module provided by Dol-
lar in Dollár (2006). This was adapted from Matlab+mex to our C++ implementation that uses
classes from the OpenCV 2.4.5 library. Feature extraction is fast because of clever usage of in-
tegral images, parallel computing of the channels and SSE instructions. The present module has
the standard configuration of channels: luv, gradient magnitude and 6 gradient orientation bins.

95

Parameters have been set to: 5000 random features with an area of at least 25; shrinking factor
of 4, triangular smoothing which is equivalent to a Gaussian blur with a sigma of 1. See Dollar
et al. (2009a) for more details about the parameters.

Classification is performed with an ensemble of 5000 weak learners. Both the training
and predicting have been reimplemented to optimize prediction speed. Discrete boosting is
applied with two level decision trees. This option is motivated by Dollár et al. (2010), where the
authors show that the boosting method does not have a large impact on the detection rate and
that 2 level decision trees are the best for this task. The splitting criterion for the decision tree is
the local training error, i.e. the best split is the one that minimizes the training error. Rejection
thresholds for the cascade classifier are obtained via the direct backward pruning method applied
on the training set. It was proposed in Viola et al. (2005b). In most cases it is preferred to
obtain the thresholds on a validation set rather than the training set. When this validation is not
performed, the rejection thresholds should be lowered in order to prevent the quick rejection of
unseen positive examples. A simple recalculation of the thresholds can be performed in order to
obtain rejection thresholds for any end threshold (see Viola et al. (2005b)).

At detection time all rectangles obtaining a classification score higher than a given thresh-
old θ) are retained for non-maximum suppression. For every two overlapping rectangles, we re-
tain only the one with the higher score. The overlap can be determined in multiple ways. Here,
we use the formula: omin = R1∩R2

min(R1,R2)
, where R1 and R2 are the areas of the two rectangles, and

the numerator contains the area of their intersection. This eliminates smaller bounding boxes
from inside larger ones because in this case the overlap is high due to the min function from
the numerator. For the same reason, it more aggressive than the usual alternative: the PAS-
CAL VOC-type overlap measure o = R1∩R2

R1∪R2
. This is why lower thresholds are suitable for this

method. Another alternative that is useful for large number of detection windows is to perform
a greedy elimination. The threshold for considering overlap is set to 0.4.

At the training phase, we repeat the same operations at each scale to generate classifier
models. We first process the positive examples. Each bounding box of a person is cropped from
the original image and resized with bilinear interpolation to the size of the current detection win-
dow (e.g. 60x26px). Adjustments are mare to center to the bounding box and to preserve the
original aspect ratio (resizing factor is the same along the width and the height). To increase the
diversity we also process the horizontally mirrored image. The 5000 features are calculated and
saved for later with a positive label. These features are randomly generated rectangles from in-
side the detection window area. To obtain negative samples, we select 5000-7000 random crops
from the list of images not containing any pedestrians. A uniform sampling is performed, i.e. if
there are 5000 images, then one random rectangle is chosen from each, if there are 20000 images
(a typical case), then one random rectangle is chosen from every 4th. For every random window,
we calculate the features and save them for later with a negative label. Once all examples are
processed the file containing the features can be fed as input to train the classifier.

Next, we perform bootstrapping. Call the initial model as model-x-0, where x stands for
the height and 0 stands for no bootstrapping. By applying the classifier on negative images,
we obtain at first many false positives. At each stage we retain 7000 of these false positives
and append their feature vectors to the training file. After retraining, the classifier model-x-1 is

96

obtained. This process is repeated 2-3 times until there are only a few false positives or no change
is observed. Limiting the number of examples is essential to keep the training set balanced and
it also helps reduce redundancy. We have observed that the classifier for the smallest scale
produces false positives even after 4 rounds of bootstrapping. This is a clear signal indicating
the failure of the classifier to learn a good model from the training data.

Next, we present some details about how the presented approach can be implemented on
a mobile device such as a tabled or smartphone. Having the algorithm already implemented in
C++, developing an Android application is possible since we can easily integrate the existing na-
tive code with Java code by making use of Java Native Interface (JNI) framework. The algorithm
was ported on an Android mobile device having the following characteristics: NVIDIA Tegra
3 T30L chipset, Quad-core 1.2 GHz ARM Cortex-A9 CPU, NEON instruction set support. We
have used JNI calls in order to capture the frames in a Java environment and send them for a
faster processing in a native C++ environment. For a better performance we have used OpenCV
2.4.5 for Tegra 3 library accelerated for ARM NEON architectures and we took benefit from
the multi-core processor by parallelizing the code with Qualcomm MARE Parallel Computing
Library. We took advantage of the pfor each functionality provided by MARE in order to sub-
stitute the #pragma omp OpenMP precompile directives used in our PC version. For handling
the reading and writing of the training files we have used the AssetManager class provided by
Java. This allows us to compress the files and perform one time writing in the internal memory
of the portable device upon installation of the application and extract the data whenever we need
during running the algorithm.

Parameter Description Value
N number of weak learners 1000

M number of features 5000

d stride (grid step) 8

ρ aspect ratio 0.43

h pedestrian heights {60, 92, 136, 212, 340}
To overlap threshold for NMS 0.4

B additional bootstrap samples at each stage 7000

Table 5.19: Relevant parameters of the detection algorithm

Experimental results

A labeled pedestrian dataset was gathered for the purpose of training and evaluation (see
Figure 3). This set was captured using a smartphone placed on the windshield of a vehicle driving
through the city. The purpose of this new dataset is to reproduce as closely as possible the real
situation where the detection method would be applied. The dataset is available in both video
(mp4) and image (png) format. Total video length is around 15 minutes. The video framerate

97

is of 30fps. All images have 640x480px resolution (landscape). The total number of images is
27666. The set is broken into independent sequences based on separate recordings and contains
mostly frames with pedestrians. We provide the pedestrian bounding boxes for each image in
the dataset in a simple text file format. Note, that some pedestrians are unlabeled. This is the
case only for very crowded scenes and for persons that are far away and thus appear to be very
small. There can be up to 10 pedestrians in a single frame.

The pedestrian bounding boxes are divided into a nonoverlapping training set and test
set. The initial training set contains 3205 bounding boxes with pedestrians and 219 negative
examples (images with no persons) obtained by labeling every 10th frame. In order to enrich
the dataset, we have interpolated the detections and have generated an interpolated training set
consisting of 27318 pedestrian rectangles. Due to the reduced number of negative examples, it is
recommended to augment the negative training set (images not containing any pedestrians) from
another source (e.g. INRIA, Caltech or general images). For our training procedures we have
augmented the examples from this dataset with a portion of the images (around 4500) from the
Caltech Pedestrian Dataset that do not contain any pedestrians.

We provide some interesting and relevant statistics for the dataset. The distribution of
the heights of the bounding boxes is given in Figure 1. Approximately 88% of the bounding
boxes are smaller then 140px in height, while the predominant height is 90px. The width of
the bounding boxes follows an exponential distribution shown in Figure 1. The most likely
aspect ratio is 0.43, see Figure 2. An important statistic about the frequency of the centers of
the bounding boxes reveals that only a negligible part (0.3%) of them are positioned outside the
200-300 horizontal stripe (see Figure 4.1). Also, due to the placement of the recording device,
and because the pavement is on the right side, pedestrians occur more frequently on the right
side.

10
−2

10
−1

10
0

10
1

.10

.20

.30

.40

.50

.64

.80

1
INRIA − minimum overlap: 20% − all

false positives per image

m
is

s
ra

te

ours4: 0.162682
dollar4: 0.059659

(a) INRIA

10
−3

10
−2

10
−1

10
0

.40

.50

.64

.80

1
cluj pedestrians − minimum overlap 20% − all

false positives per image

m
is

s
ra

te

ours4: 0.353056
dollar4: 0.433560

(b) Cluj Pedestrians

Figure 5.9: DET cruves on pedestrian benchmarks

98

area stride = 8 stride = 4 stride = 3
overlap = 0.40 0.361 0.353 0.367
overlap = 0.65 0.373 0.367 0.375
overlap = 0.70 0.384 0.372 0.379

Table 5.20: Area under the DET curve for different parameters on the Cluj Pedestrians dataset

To evaluate the execution time of each part of the system, we measure at least 1000 times
the speed of each module. Table 5.21 summarizes the measurements that we have obtained.
The bottleneck of the pipeline is the feature extraction module where heavy optimization has
been performed, even so it is the slowest part. A further reduction of the number of the candi-
dates could help drastically improve the speed. The number of candidates is around 2000-3000
depending on the scales. The estimated execution time (disregarding the visualization part) is
23.67 frames per second (around 42 milliseconds per frame). We compare the speed gain with
our previous version from Varga and Nedevschi (2013a): 180 milliseconds on an image with
a resolution of 370x480px would result in approximately 311ms running time on a 640x480px
image, thus the speed gain is: 311

42
= 7.4. Time measurements on Android for a 640x480px res-

olution indicate a 1.21 FPS average frame rate (around 823 milliseconds per frame). This is the
parallelized Android version which has an overall speed gain compared to the single threaded
version of: 1781.89

823.0
= 2.16 (1491.29

739.53
= 2.01 - feature extraction; 230.60

78.73
= 2.92 - classification).

Step PC [ms] Android [ms] Android + MARE [ms]
RoI selection 0.131 0.29 0.29

Feature Extraction 38.3 1491.29 739.53

Classification 3.38 230.60 78.73

NMS 0.096 0.13 0.13

Table 5.21: Execution time of different modules

The reduced execution time of the algorithm is due to the fact that almost all processing
steps have been specifically rewritten for the detection task. Our implementation is in C++, com-
piled with Visual Studio 2010 compiler with OpenMP multithreading features enabled. Other
settings include: fast code optimization enabled, fast floating point model, omit frame pointers.
OpenCV 2.4.5 is the chosen library for image processing functions.

The workstation used to test our system has the following parameters: Intel Core i7
CPU, 3.5 GHz, 4 cores, 8 logical processors, 16 GB RAM. Most of the relevant operations are
parallelized to use the processing power of the CPU efficiently.

99

5.3.3 Lazy Feature Extraction (LFE)
Proposed solution

We turn to the description of the third version of our pedestrian detection system. Our
proposed approach relies on the well established combination of integral channel features and
boosted classifiers. We focus on detection optimization and not on feature extraction. By de-
laying feature calculation at detection time to the last moment we hope the reduce the execution
time while maintaining the same detection accuracy as the brute force approach. This optimiza-
tion also allows us to consider a larger feature pool which should help the classifier to learn a
better model.

More concretely, we use integral channel features and boosted two-level decision trees.
Our method refines the work of Dollar et al. and uses the same feature channels. Thus, we
consider ACF from Dollár et al. (2014) as a baseline. Even though we present our method using
the features from ICF Dollar et al. (2009a), a precursor to ACF, any other features that can be
separately calculated online can be employed.

Rectangular sums of image channels are fast to calculate but if the feature pool is very
large (more than 10k), real-time detection is prohibited. We believe we can circumvent this
drawback and still reap the benefits of using an enriched feature pool for classification. For
convenience, in this work we will refer to the image channels from which the sums are calculated
to as simply channels and to each rectangular sum as simply features. Each feature is specified
by the channel on which it is calculated and the rectangular area of its support region.

Using cascaded boosted classifiers permits us to delay feature calculation until the very
last moment: when it is needed for decision making. Specifically, suppose a boosted classifier
model is available with M binary trees as weak learners. Each weak learner only needs a subset
of the features to make a prediction. So we calculate only the features that are required inputs
for the current weak learner. Typically, the detector is given a large number of candidates and
eliminates most of them by cascading. If any partial hypothesis values (scores) are below the
rejection threshold, the example is eliminated. This presents another opportunity to delay feature
extraction since at each stage we only need the features for the candidates that have not been
eliminated. This approach is new and it is in contrast to traditional methods which calculate all
features at once for all candidates, which is clearly not necessary.

At detection time we perform the following operations. First, the image channels are
computed at different scales. For this we employ available software provided by Dollar et al.
Dollár (2006). Next, we use Algorithm 16 and the trained model to perform detection. Finally,
pairwise non-maximum suppression is applied from the toolbox to retain only the bounding
boxes with the highest confidence in case of overlaps.

Definitions of the terms appearing in Algorithm 16 : calculateImageChannels() is a func-
tion responsible for creating the necessary image channels; generateCandidates() provides the
list of all candidates; calcFeatures() performs only the rectangle sums that are needed for the
current stage and only for current candidates; tocalci is a list containing the features that must be
calculated for each stage - available from the training procedure; treei is the model for the i-th
decision tree that; reji is the rejection threshold for stage i, all candidates with scores less than

100

Algorithm 16 Lazy feature extraction and prediction

Input: color image, boosted classifier model with M trees
Output: a list of rectangle and confidence value pairs

1: C = calculateImageChannels()
2: L = generateCandidates()
L = {(ri, si)|i = 1 : N}, si = 0

3: L2 = {}
4: for i=1:M do
5: F = calcFeatures(C,L,tocalci)
6: for j=1:size(L) do
7: snew = sj + predict(F, treei)
8: if snew > reji then
9: L2 = {L2, (rj, snew)}

10: end if
11: end for
12: L = L2

13: L2 = {}
14: end for

this number are rejected (cascading) and no further calculations are made for them; predict()
uses the model of a decision tree to make a prediction based on some features F .

A more detailed explanation of the algorithm is given next. At detection time we first
calculate the image channels at different scales. We start with a list of all possible candidates
and their scores - initially set to 0. We remove negative instances from this list iteratively at each
stage of the classification. We do not actually work with rectangles instead only with indexes to
rectangles (pointers). Only a limited number of features are needed for a weak learner to make
a prediction. Note, that this enables us to use only a small memory zone for holding the feature
values. In the presented algorithm some features are recalculated. This can be circumvented
easily by allocating a larger memory zone for feature storing but this also introduces another
layer of lookup operations. After the features are ready, the classifier uses the current weak
learner to update the score of each candidate. If the new score is above the rejection threshold for
the stage, the candidate remains (it is added to a temporary second list L2 which will be swapped
with L - this is efficient because the lists L and L2 can be implemented as simple preallocated
arrays). Otherwise the candidate is eliminated and no further features are calculated for it in the
later stages. At the end we are left with all the candidates that have a sufficiently large score.

Training procedure
Classifier training is based on well established procedures for boosted classifier training

from the literature presented in Dollár et al. (2014); Benenson et al. (2012). We start with positive
examples and 5000 random negative examples. Several bootstrapping rounds successively add
a maximum of 5000 false positives and retrain the classifier, however the number of negative
examples cannot increase above 10000. During training all the features are calculated and stored.

101

This means that training with a large number of features will be computationally expensive.
Furthermore, it requires a significant amount of memory (see Implementation details). After
each training stage, the features that are necessary for each decision tree are established (the
optimal features to make the required splits). At detection time only these features need to be
calculated and stored, which in turn reduces the space complexity for detection from O(ND) to
O(N) - for 2-level decision trees it is exactly 3N floats - where N is the number of candidates,
and D is the number of features. Memory requirements are an issue for training sessions with
many features (over 100k) and a large number of training examples (over 15k).

For model training we use our custom implementation of Discrete AdaBoost with binary
trees as weak learners. The key difference between our implementation and the classifier from
the toolbox is that we do not perform feature quantization. This increases the memory require-
ment because we need to store all features and because we need to keep track of the sorted
indexes. However, it increases detection accuracy, as shown by the experiments. It also entails
a longer training time. Another difference is that we have different rejection thresholds at each
stage of the boosting much like in Bourdev and Brandt (2005) and Viola et al. (2005b). Rejec-
tion thresholds are estimated on the training set by setting them to the minimal score of all the
positive examples for each stage. There may be a need to adjust these thresholds for detection
on another dataset to prevent premature elimination of positives. These values greatly influence
the speed and the accuracy of the classifier so it is crucial that they are learned properly.

Time complexity
Next, we analyze the theoretical time complexity and the speed gain from the proposed

optimization. Let T (N) be the time required to perform detection starting from N candidates.
The baseline time complexity for the brute force algorithm is of O(ND), where D is the num-
ber of features and is typically larger than 5000. This signifies precalculating everything before
prediction is performed. Using lazy feature extraction we can exploit the fact that candidates are
gradually eliminated. The number of candidates at each prediction stage t is a decreasing func-
tion f(t) - note, that f depends on N but for convenience we will hide this dependence. Because
prediction with a single decision tree consists of a few memory look-ups and comparisons, we
can assume it takes a constant time c. Let M be the number of weak learners which is the same
as the number of stages. Using the optimizations the running time will have the following form:

T (N) = c

M∑

i=1

f(i) ≤ c

∫ M

t=0

f(t) = c(F (M)− F (0)) (5.15)

where F (t) is a primitive function of f(t), if N is considered a constant.
We analyze two forms for the function. If we assume a linear decrease in the number of

candidates, i.e. f(t) = N − at, then the time complexity of the algorithm becomes:

Tlin(N) ≤ c(NM − a/2 ·M2) = O(NM) (5.16)

Even if it is not apparent from the previous formula, this running time is always smaller than the
original baseline because only a subset of the calculations is executed and normally M < D.

102

For our experiments typically M = 2048 and D > 100k.
More realistically, if we assume an exponentially decaying number of candidates then

f(t) = N · exp(−at) and the running time complexity has the form:

Texp(N) ≤ c(−N/a · exp(−aM) +N/a) = O(N) (5.17)

This entails that the running time will be dominated only by the number of starting candidates
and not by the dimension of the features D or the number of weak learners M . This result is
justified in the experimental results section.

Implementation details
Our implementation is in Matlab making use of Dollar’s toolbox and feature extraction

that are available online - see Dollár (2006). The crucial parts are written in C++ and compiled
with Visual Studio 2012 compiler with OpenMP multithreading features enabled (for training
only). Other settings include: fast code optimization enabled, fast floating point model, omit
frame pointers.

For memory efficiency we store all features as floats (4 bytes) and for instance indexes
we use unsigned short (2 bytes). Optimization for training phase involves presorting the training
instances according to each feature and saving the indexes. After this, all operations have a time
complexity of at most O(ND) (number of instances times the number of features). The most
time consuming operation is finding the optimal threshold. This can be split into independent
operations and parallelized. For detection we need to store the feature description (channel
index and rectangular area) for each weak learner, i.e. 5 · 3 ·M integers (4 bytes) for the M
weak learners. We preallocate a static reusable memory zone for storing the calculated features
and the integral image. This is done in Matlab as a field for the classifier model structure. Peak
memory consumption is at 31GB when training with 145k features on Caltech.

Experimental results

We evaluated our detection algorithm on two relevant pedestrian detection benchmarks:
INRIA - Dalal and Triggs (2005) and Caltech-USA - Dollar et al. (2009b). We abbreviate the
method presented here as LFE standing for lazy feature extraction. Methods are scored based
on the log-average miss rate using the dbEval script from the provided toolbox for the Caltech
dataset.

Our approach compares directly to ICF Dollar et al. (2009a) since it uses the same fea-
tures. But ACF Dollár et al. (2014) is an optimized version and the source code is provided at
Dollár (2006), so we consider this as baseline. We will show that our modification outperforms
the original method and can achieve above 30 fps depending on rejection threshold settings. The
improvement comes from the possibility of extending the number of features and the number of
weak learners without significantly increasing the execution time.

To extend the feature pool available from the ACF (this consists of 4x4 aggregated
squares), we test several options. First, we augment with random rectangular sums in the same
manner as in ICF. Second, we test all rectangles with a given maximal dimension. We always

103

include the original square features. Our tests show that the latter approach enhances detection
performance. This happens only when there are a large number of weak learners and the training
set is sufficiently large. A large feature pool can enable the classifier to overfit the training data,
that is why in this case the training set must be sufficiently large.

In the following we give specifics and define notations regarding the extended feature
pool. Let a feature be described by the 5-tuple: (i, x1, y1, x2, y2), representing channel index,
left, top, right and bottom of the rectangular support region. Let the notation m2 indicate the set
of all rectangles satisfying x2 − x1 ≤ 2 and y2 − y1 ≤ 2. m2

12 refers to all rectangles satisfying
x2 − x1 ≤ 12 and x2 − x1 = 0 mod 2, similarly for y. If x1 = x2 and y1 = y2, then the feature
represents a pixel from the channel. The number of features for some of the tested configurations
are: |m0| = 5120 (baseline); |m2| = 78120; |m5| = 143370; |m2

12| = 127400. Note, that the size
of these sets depends on the shrink factor, i.e. integer downsampling amount for channels.

Test1: Our training procedure provides better models for smaller number of weak learners
than the baseline detector, however training takes longer (15 minutes for 2048 weak learners on
INRIA with 4 rounds of bootstrapping). The principal difference is that our training module
does not perform feature quantization and thus uses more memory than Dollar’s. We compare
the classifier generated by the toolbox with our classifier for different number of weak learners,
the results are shown in Figure 5.10. The models are the outputs of the stages of the bootstrapping
process. Our classifier outperforms the baseline, with larger improvements at smaller number of
weak learners. LFE 2048 uses the same features as the baseline and achieves a score of 17.11 %
at 28 fps, this shows that we maintain the accuracy and the speed of the baseline.

Test2: Figure 5.11 compares our detector with the state-of-the-art results on this dataset.
We achieve a log-average miss rate of 15.71% at 26 fps, a performance that improves 1-2%
over the baseline. The optimal model uses a 128x64 detection window, 2048 weak learners,
rectangular features of maximum dimension 5 (m5) amounting to a total of 143370 features. At
training we reduce the estimated rejection thresholds by 1 to avoid overfitting. At evaluation we
change all rejection thresholds to a constant value of -4. By raising this value one can adjust the
score/speed tradeoff (e.g. at a constant threshold = -2 the score is 16.95 at 34 fps).

Test3: The training set from Caltech is sufficiently large to avoid overfitting with a large
feature pool. Our best configuration in terms of log-average miss rate obtains 35.30% at 7.13
fps. Key to obtaining this result is a 64x32 detection window; reducing the shrink factor to 2
(which also increases the time needed to compute the channels to 41 ms / 24 fps hindering fast
detection); more weak learners (4096) and more features (m2

12: 127400 rectangles with maximal
dimension of 12 and dimensions divisible by 2). This result shows that features can be learned
automatically as opposed to the method from Zhang et al. (2014) (training for this model took
9.4 hours). Figure 5.13 compares LFE with state-of-the-art methods. Note that better performing
methods employ additional information. InformedHaar from Zhang et al. (2014) has a running
time of 1.6 seconds, ACF-Caltech+Nam et al. (2014) utilizes an extended training set, LDCF
Nam et al. (2014) does not specify runtime but it requires at least 0.5 seconds to decorellate
the features, Katamari Benenson et al. (2014) employs other features, motion information and
person-to-person patterns. SpatialPooling Paisitkriangkrai et al. (2014b) has a running time of
2 seconds. Our goal was to improve on the original algorithm and the approach presented here

104

can be used in conjunction with the previous techniques to enhance detection quality.

Test4: Increasing the feature pool size is beneficial on the Caltech dataset. Some relevant
results are presented in Figure 5.12. Adding random features (rand 5k and 10k) did not show
any promising results, sometimes performing worse than the baseline. More extensive testing
was done using rectangular regions of different maximal dimensions (m4, m5, m2

12). In general,
better performance is obtained when the admissible rectangles are larger.

Test5: We have collected data about how many candidates remain after each stage of
classification. We plot the average number of candidates on a log scale calculated from multiple
480 x 640 pixel sized images. Figure 5.14 shows the expected number of candidates decreases
with different rejection threshold settings. The rejection threshold can be fixed to a negative
constant or the rejection thresholds can be estimated during the training process producing a
variable threshold for each stage. The log-plot shows that in all cases after a few initial stages
the candidate pool shrinks rapidly so we can assume an exponential decay. This means that the
running time is influenced only by the initial number of candidates.

Test6: To evaluate the execution time of the detection, we measure the time needed to
produce detections on 100 images, each image having the standard size of 640x480 pixels. The
speed and the accuracy of the detector depends highly on the way the rejection thresholds are
set. Table 5.22 summarizes our measurements and compares it to the baseline providing also the
average miss rate on the Caltech dataset. Columns are: method name, number of weak learners,
rejection threshold, shrink factor, stride for candidates, number of features, miss rate and frames
per second.

When the feature pool is increased, the results improve at almost no penalty for the execu-
tion time. Indeed, a better feature pool may actually lead to a faster rejection of more candidates.
Execution time is virtually unaffected by the number of weak learners. The speed/error trade-off
is controlled by adjusting the rejection thresholds. Setting the shrink factor to 2 (instead of 4 as
in the baseline) decreases the frame rate because channel calculation takes longer in this case
(41 ms / 24 fps). A shrink factor of 2 basically means working with features aggregated on 2x2
squares.

All calculations performed during detection are done on a single CPU core. Code paral-
lelization inside the detection is not worth it since initializing the thread pool already costs more
than most of the code. If we eliminate cascading (set the rejection thresholds to −∞), and cal-
culate all the features, the execution time increases significantly. Typical times needed for each
part are in case of shrink size 4 features: channel calculation 19ms (provided by the toolbox),
integral image calculation 2.7ms, setup and lookup table creation less than 1ms, interleaved lazy
feature extraction and prediction 8.4ms.

The workstation used to test our system has the following parameters: Intel Core i7
CPU, 3.5 GHz, 4 cores, 8 logical processors, 32 GB RAM. Most of the relevant operations
from the training phase are parallelized to use the processing power of the CPU efficiently.
Speed measurements are provided in the Experimental Results section. For comparison, on our
machine ACF runs at 32 fps.

105

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

57.60% ACF 32
51.29% LFE 32
30.21% ACF 128
28.94% LFE 128
22.01% ACF 512
19.48% LFE 512
17.28% ACF 2048
17.11% LFE 2048

Figure 5.10: ROC curve and log average miss rate on INRIA
Showing models with 32, 128, 512 and 2048 weak learners.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

72.48% VJ
45.98% HOG
19.96% LatSvm−V2
19.89% ConvNet
18.98% CrossTalk
17.28% ACF
15.96% VeryFast
15.95% WordChannels
15.71% LFE
15.37% RandForest
14.43% InformedHaar
13.79% LDCF
13.70% Franken
13.53% Roerei
13.32% SketchTokens
11.22% SpatialPooling

Figure 5.11: ROC curve and log average miss rate on INRIA
Comparison with state-of-the-art methods.

106

10
−4

10
−3

10
−2

10
−1

10
0

10
1

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

49.89% LFE rand 10k
47.50% LFE rand 5k
36.25% LFE m

5

36.19% LFE m
4

35.30% LFE m
12
2

Figure 5.12: ROC curve and log average miss rate on Caltech-USA
Different feature pool configurations. Rand 5k stands for 5000 additional random rectangles.

Classifiers with added random features use 2048 weak learners and shrink size of 4.

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

94.73% VJ
68.46% HOG
43.42% MultiResC+2Ped
42.30% WordChannels
40.54% MT−DPM
39.32% JointDeep
37.87% SDN
37.34% ACF+SDt
35.30% LFE
34.60% InformedHaar
29.76% ACF−Caltech+
24.80% LDCF
22.49% Katamari
21.89% SpatialPooling+

Figure 5.13: ROC curve and log average miss rate on Caltech-USA
Comparison with state-of-the-art methods.

107

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

stage(t)

lo
g

nu
m

be
r

of
 c

an
di

da
te

s(
N

)

f(t) estimation

thr=−5
thr=−variable
thr=−1

Figure 5.14: Log-plot of the average number of candidates after each cascade stage

n M rej shr str # f mr fps
ACF 2048 -1 4 4 1280 44.22% 31.63
LFE 2048 -1 4 4 1280 45.40% 39.81
LFE 2048 -2 4 4 1280 44.69% 30.01
LFE 2048 -∞ 4 4 1280 44.78% 0.59
ACF 2048 -1 2 2 5120 39.59% 14.24
LFE 2048 -2 2 2 m0 39.64% 7.42
LFE 2048 -2 2 2 m2 40.96% 9.27
LFE 2048 -2 2 2 m4 39.27% 10.12
LFE 2048 -2 2 2 m2

12 36.75% 10.88
LFE 4096 -2 2 2 m2

12 35.69% 10.88
LFE 4096 -3 2 2 m2

12 35.30% 7.13

Table 5.22: Execution times and log-average miss rate on Caltech.

108

5.3.4 Multimodal Multiresolution Filtered Channels (MM-MRFC)
Proposed solution

In this part, we present a pedestrian detection method proposed in Costea et al. (2017)
relying on the standard sliding window detection paradigm. The detector employs the classical
features introduces in Dollar et al. (2009a). To enhance detection performance new feature
channels are proposed: 2D and 3D context channels, geometric and symmetrical channels. These
channels exploit multisensorial perception information from color, motion and depth. The visual
information can be extracted from cameras. Depth can be obtained from laser point clouds when
such a sensor is available or from stereo reconstruction. Motion information can be obtained
from analyzing adjacent frames from the video stream.

Our personal contributions for the paper are: the study of scale invariance and feature
value correction; 3D point cloud alignment to road plane. In the following we summarize the
contributions of the paper and describe personal contributions in more detail.

Multiresolution channels were introduced in Daniel Costea and Nedevschi (2016). The
work proposed to successively filter different channel types using a 3x3 box filter and applying
a horizontal and vertical different filter on each result. The purpose of such an operation is to
capture edges at different scales. Since the filters involved are simple, this can be applied at
minimal computational costs.

2D context channels capture information about the 2D location of objects. This channel
enables the classifier to learn constraints on the vertical and horizontal positions of objects. The
three 2D context channels are: vertical, horizontal and symmetric-horizontal. Vertical channels
at each position are simply equal to the current image row divided by the image height, horizontal
channels are equal to the current image column divided by the image width, symmetric channels
are equal to the distance from the middle column divided by the half of the image width.

Symmetrical channels are designed to have high response for vertically symmetric re-
gions defined on specific ranges. An additional channel is generated which is the sum of sym-
metry channels for all range values. The channel values are calculated for each position (x, y)
and range r using the horizontal derivative Dx:

Sr(x, y) =
r∑

i=r/2

(
Dx(x− i, y)−Dx(x+ i, y)

Dx(x− i, y) +Dx(x+ i, y)

)2

(5.18)

3D context channels encode 3D information obtained from the point cloud. A superpixel
segmentation of the image is used. All points are projected onto the image. We can assign X,Y
and Z values to each superpixel according to the points that fall inside. This information allows
the classifier to distinguish between near and distant objects.

To obtain a more relevant representation we align the point cloud so that the y axis en-
codes height above the ground plane. For this purpose, we estimate the ground plane using
RANSAC plane fitting on the point cloud. A rotation matrix is found which aligns the y axis to
the plane normal n =

(
nx ny nz

)t. The steps to obtain the matrix are given below. The final
rotation matrix R is composed of three rotations, each designed to eliminate a component from

109

the normal vector. rot(angle, axis) return a rotation matrix with angle around the given axis.

α = −atan2(nx, nz)

Ra = rot(α, y)

u = Ra · n
β = −atan2(uz, uy)

Rb = rot(β, x)

v = Rb · u
w = Rb ·Ra ·

(
0 0 1

)t

γ = −asin(||w ×
(
0 0 1

)t ||)
Rg = rot(γ, y)

R = Rg ·Rb ·Ra

(5.19)

After alignment the y axis can be used to generate a binary channel by thresholding on a certain
value to distinguish between objects on and above the ground plane.

Geometric context channels leverage superpixel segmentation information. From the pre-
vious step we have assigned positions to each superpixl. Superpixels are grouped together if they
are less than 0.5 meters apart. After the grouping we form channels encoding the dimensions
(heigh, width and area) of each group.

Scale correction

Ideally, when computing classification features for pedestrians, the feature values should
not depend on the size of the pedestrian. The scale invariance of the classification features is lost
due to the use of a single image feature scale and single classifier model for all pedestrian scales.
Enabling scale invariance should further increase the robustness of classification.

The features in this work are sampled from a grid based on the bounding box size. In
order to work with a single classifier, the features should have the same values when extracted
from the same object but at different scales. Note, that since we do not perform resize operations
the approximations for scale changes from Dollár et al. (2010) do not apply in our case.

We define the ratio function (or correction factor) for feature type f as: the feature value
extracted at at scale s of a point divided by the feature value at the original scale of the same
point. It is important to note, that due to rescaling the position of the point changes in the image
so:

rf (s) = f(s, x, y)/f(1, x/s, y/s) (5.20)

Our goal is to extract features at all scales using only the image at its original scale. For
this we need a model for the function rf (s) for different feature types. This would enable us to
write:

110

f(s, x, y) = rf (s) · f(1, x/s, y/s) (5.21)

We will determine the form of the ratio function for different feature types. In the first part
we ignore discretization errors, resizing artifacts and consider the image as a continuous signal
to determine the form of the ratio function theoretically. In the second part, we collect data from
the Caltech dataset and perform a linear fit to find the form of the ratio function empirically.

Theoretical estimation

In the following we estimate the theoretical ratio between the features from s times larg-
er/smaller bounding boxes and the original boxes. Ideally, color features should not change
since the new position for the features coincide with the positions obtained from the grid which
is adapted to the new scale:

Is(x, y) = I(x/s, y/s) (5.22)

where Is denotes the the image at scale s (s-times smaller/larger) and I signifies the original
scale. This shows that rI(s) = 1 for color features. The result is subject to discretization
artifacts. Applying the derivative shows that rpd(s) = s−1 since:

∂

∂x
Is(x, y) =

1

s

∂

∂x
I(x/s, y/s) (5.23)

For the gradient magnitude we also have rM(s) = s−1 since:

Ms(x, y) =
1

s
M(x/s, y/s) (5.24)

The factor is also transmitted to gradient orientation channels since these are proportional
to the magnitude.

Empirical estimation

In order to estimate the correction factor empirically we extract features from the Caltech
dataset at multiple scales. For each feature type we find its maximum value. We retain only
features that are above fmax/5 (20% of the maximum feature value). The form of the ratio
function similar to the one suggested in Dollár et al. (2010):

f(s) = ae−λsf(0) = exp(log(a)− λs)f(0) (5.25)

where f(s) is the feature after a downsampling of 2s and f(0) is the feature at the original scale.
According to the previous model, a linear fit for log(f(s)/f(0)) determines a and λ. Note, that
we approximate the ratio function for pointwise features, whereas in Dollár et al. (2010) the
regional sum is considered. To obtain graphs compatible with their work we would need to plot
f(s)

22sf(0)
as a function of s because the regional sum introduces a (2s)2 term (not done here).

111

0 0.2 0.4 0.6 0.8 1
scale

1

1.005

1.01

1.015

1.02

ra
ti

o
L

orig
orig-fit
s1
s1-fit
s2
s2-fit
s3
s3-fit
s4
s4-fit
s5
s5-fit

0 0.2 0.4 0.6 0.8 1
scale

1

1.1

1.2

1.3

1.4

1.5

ra
ti

o

gradmag

orig
orig-fit
s1
s1-fit
s2
s2-fit
s3
s3-fit
s4
s4-fit
s5
s5-fit

0 0.2 0.4 0.6 0.8 1
scale

1

1.1

1.2

1.3

1.4

1.5

1.6

ra
ti

o

ori2

orig
orig-fit
s1
s1-fit
s2
s2-fit
s3
s3-fit
s4
s4-fit
s5
s5-fit

0 0.2 0.4 0.6 0.8 1
scale

1

1.1

1.2

1.3

1.4

1.5

1.6

ra
ti

o

L dx

orig
orig-fit
s1
s1-fit
s2
s2-fit
s3
s3-fit
s4
s4-fit
s5
s5-fit

0 0.2 0.4 0.6 0.8 1
scale

1

1.2

1.4

1.6
ra

ti
o

gradmag dx

orig
orig-fit
s1
s1-fit
s2
s2-fit
s3
s3-fit
s4
s4-fit
s5
s5-fit

0 0.2 0.4 0.6 0.8 1
scale

1

1.2

1.4

1.6

ra
ti

o

ori2 dx

orig
orig-fit
s1
s1-fit
s2
s2-fit
s3
s3-fit
s4
s4-fit
s5
s5-fit

Figure 5.15: Gathered data points for the mean ratio and fitted polynomials
The figures show on the x-axis −log2(s) and on the y-axis the ratio function r(−log2(s)) for
different feature types: L-channel, L-channel with x derivative filter applied, gradient magnitude,
gradient magnitude with x derivative filter applied, second gradient orientation bin channel, the
same with dx applied. The different lines from the graph plot the behavior of the original channel
and the 5 smoothed channels, i.e. sx signifies x number of smoothing filters.

Figure 5.15 shows the data points that indicate the mean ratio and the linear fit for 6
representative feature types. We plot the ratio function in terms of−log2(s) for values s ∈ [0, 1].
This was used for linear fit and r(s) is obtainable via a variable change.

The graphs demonstrate that: for color channels, the features retain their values after
resize operations, just as the theoretical model predicted: rI(s) = 1; partial derivative operations
do not conform to the theoretical model: rpd(s) = s−0.585 (at a shrinking of 2 it is around 1.5
and not 2); smoothing operations decrease the exponent further; the first smoothing operation
for orientation features behaves differently (see the change between orig to s1 and s1 to s2).

Experimental results

For evaluation we use standard protocols for each dataset and we measure the perfor-
mance of our method on three benchmarks: Caltech Pedestrians, KITTI Object Detection, and
Tsinghua-Daimler Cyclists. In the case of Caltech benchmark, we compute the log-average miss
rate for the precision in the range of [10−2, 100] false positives per image (FPPI) for the reason-
able setup. In the case of KITTI, we calculate the average precision (AP) for the recall range of
[0, 1] for easy, moderate and hard setups. For the Tsinghua-Daimler dataset we find the average

112

precision for easy ignore and easy discard configurations.
Caltech - Pedestrian
We provide the results on the Caltech dataset both using the standard training set and with

the extended training set. Figure 5.16 -left shows the results along with the state of the art. The
figure from the right emphasizes what each method uses as input. Compared to other approaches
the miss rate is in the top 5 and the detector is capable of running at 30 FPS.

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

false positives per image

m
is

s
 r

a
te

22% SpatialPooling+

22% SCCPriors

21% TA−CNN

19% CCF

18% Checkerboards

17% CCF+CF

17% Checkerboards+

12% DeepParts

12% CompACT−Deep

11% Ours−MM−MRFC

10% MS−CNN

10% RPN+BF

Figure 5.16: Caltech comparison with state of the art
On the right, colors indicate: green - standard training set; purple - multimodal information; red
- deep learning

Channel Type Caltech MR
- reasonable -

Color MRFC no s.c. 26.53
MRFC 23.17
+ 2D spatial 20.80
+ 2D symmetry 18.26

Motion + SDt 17.29
+ MM-MRFC 16.11

Table 5.23: Results on Caltech in % after introducing each feature channel
Additional channels are added to the ones above them. MRFC no s.c. does not use scale

correction, while the standard variant of MRFC does.

113

KITTI - Object
On the KITTI benchmark we perform evaluation with the same validation/training split

that was used in Chen et al. (2015). In Table 5.24 we show the incremental improvements of the
proposed solution on the validation set. Each proposal increases the AP values demonstrating
the usefulness of each new feature channel.

The results for the test set compared to other approaches can be found in Table 5.25.
We present the results for pedestrians and cars. Because the number of training samples for the
bicyclist class is small, we evaluate this object class on another dataset. It can be seen that a
competitive performance is achieved for both object classes at significantly lower computational
costs. Pedestrian detection runs at 25 FPS and the car detection at 20 FPS.

Context Type KITTI AP
Easy Moderate Hard

Color MRFC no s.c. 62.84 59.98 51.10
MRFC 67.14 61.45 52.76
+ 2D spatial 69.58 63.83 54.83
+ 2D symmetry 70.28 64.75 55.66

3D stereo + spatial 77.88 70.30 60.63
+ geometric 77.97 70.61 61.47
+ MRFC 82.53 74.82 65.95

3D LIDAR + spatial 77.88 70.93 61.91
+ geometric 79.92 72.48 63.13
+ MRFC 84.26 76.34 67.18

Motion + MRFC 85.25 77.72 68.28
BB fitting 86.96 78.87 69.33

Table 5.24: Score results on KITTI (in %) after introducing each feature channel
Additional channels are added on top of the ones above them. 3D channels can be computed
either from stereo disparity or from 3D point cloud. MRFC stands for multiresolution filtered

channels.

Tsinghua-Daimler - Cyclist
The presented pedestrian detector can easily be trained to detect cyclists given a suitable

training set. The Tsinghua-Daimler benchmark Li et al. (2016) is an ideal benchmark for evalu-
ating the detection of bicyclist, considering that it contains 22161 annotated cyclist instances in
over 30k images. These were recorded in the urban traffic of Beijing. The dataset also provides
3D stereo information for each image frame.

The reader can view the ROC curve of other approaches in Li et al. (2016). Multiple
approaches were evaluated in the aforementioned paper such as: traditional boosting based slid-
ing window (ACF, LDCF); deep learning approaches with different object proposals (Selective
Search, Edge Boxes, Stereo Proposal) and architectures (VGG, ZF); deformable part models
(DPM). We train three detector for narrow, intermediate and wide bicyclists similarly to the
other sliding window approaches. Table 5.26 shows the standings on this dataset in terms of AP

114

Method Time Cars Pedestrians
Easy Moderate Hard Easy Moderate Hard

FusionDPM 30s CPU - - - 59.51 46.67 42.05
ACF 1s CPU - - - 60.11 47.29 42.90

VOTE-3Deep 1.5s CPU 76.79 68.24 63.23 68.39 55.37 52.59
MV-RGBD-RF 4s GPU - - - 73.30 56.59 49.63

FilteredICF 2s CPU - - - 67.65 56.75 51.12
DeepParts 1s GPU - - - 70.49 58.67 52.78

CompACT-Deep 1s GPU - - - 70.69 58.74 52.71
Regionlets 1s CPU 84.75 76.45 59.70 73.14 61.15 55.21
RPN+BF 0.6s GPU - - - 75.45 61.29 56.08

Faster-RCNN 2s GPU 86.71 81.84 71.12 78.86 65.90 61.18
Mono 3D 4.2s GPU 92.33 88.66 78.96 80.35 66.68 63.44

3DOP 3s GPU 93.04 88.64 79.10 81.78 67.47 64.70
SDP+RPN 0.4s GPU 90.14 88.85 78.38 80.09 70.16 64.82
MS-CNN 0.4s GPU 90.03 89.02 76.11 83.92 73.70 68.31

MM-MRFC 0.05s GPU 90.63 88.45 78.32 82.18 70.02 64.74

Table 5.25: Comparison with state of the art on the KITTI test set - Average Precision in %

for easy ignore and easy discard cases. Only the easy setup is considered since the training an-
notations contain examples with height greater than 60 pixels. Our proposed approach achieves
the best performance on this dataset.

Method Easy ignore Easy discard
SS-FRCN-VGG 0.767 0.638
EB-FRCN-VGG 0.838 0.726
SP-FRCN-VGG 0.872 0.786

DPM 0.894 0.816
LDCF 0.898 0.762
ACF 0.898 0.778

DPM-bboxpred 0.905 0.823
MM-MRFC 0.931 0.826

Table 5.26: Average precision values on the Tsinghua-Daimler

Computational costs
A significant benefit of the proposed solution is its low computational cost. Due to the

simplicity of the multiresolution filtering scheme and the proposed context channels feature
computation for an individual image takes less than 20 ms on a GPU for a 0.5 MP image when
considering all modalities. Classification of sliding windows takes around 20-30 ms. There are 5
classifiers for the car detector but the classification time for a single one is faster than in the case

115

of a pedestrian classifier. Classification time does not increase significantly with the number of
detectors. Full frame pedestrian detection is achievable at over 20 fps, currently being the fastest
top-performing solution.

5.3.5 Conclusions
The presented pedestrian detection methods were published in Varga and Nedevschi

(2013a), Varga et al. (2014) and Costea et al. (2017). The initial works have received attention
from the research community because they provide simple and fast algorithms that are capable
of running even on mobile devices and they offer acceptable detection performance. The later
works focus on improved detection accuracy while maintaining a low execution time.

In the first part we have shown our initial proposal consisting of combining region of
interest selection and detection. In the second part we have described a solution which is capable
of running in real-time at over 25 frames per second.

In the third part we have presented an optimization approach to pedestrian detection. This
approach focuses on alternating between feature extraction and classification. During this we can
eliminate unnecessary calculations because we can reject multiple candidate windows. We have
shown that our presented technique is capable of extending an available state-of-the-art method
(ACF). It is applicable to a wide range of methods that employ features calculated locally by
summing or aggregating. Increasing the number of weak learners or the number of features does
not increase the execution time of the presented detection method. This allows us to consider a
larger feature pool for training. The tests show that a larger feature pool is more advantageous
on a dataset with more images, probably because this avoids overfitting. In some situations our
boosted classifier performs better compared to Dollar’s who use feature binning and thus loose
some information during training.

In the fourth part we have described a detection method that relies on multimodal in-
formation. Input from different sensors, such as laser scanners and stereo-cameras, can greatly
improve detection performance. We have shown that detection at high speed is possible even
with multiple channel types used for feature calculations. The approach also uses a scale correc-
tion mechanism to avoid recomputing features at different scales. The results show that, at the
time of publication, the method achieved state-of-the-art results, competing with top-performing
deep learning approaches.

In the future we intend to use additional contextual information for detection as suggested
by the latest publications. Speeding up the detection by considering object proposals is a possible
way to further improve detection speed. We also intend to test this technique for general object
detection.

116

Chapter 6

Conclusions

The aim of the current thesis was to study and develop fast and robust object detection
methods. Relevant contributions were made to several processing steps such as: feature extrac-
tion, candidate generation, classifier implementation and system architecture.

In chapter 2 we have provided an overview of different feature descriptors for object
detection starting from low level color descriptors, through texture and shape features and onto
more complicated features such as Histogram of Oriented Gradients. We have provided the
necessary theoretical foundation for developing classifiers. Next, we have studied candidate
generation methods from the literature, which is a crucial step for systems that have to perform
fast detection. The related works chapter also contains the enumeration and classification of
multiple detection approaches for specific object types.

Several important conclusions can be drawn from the related works chapter:

• Relevant features lie at the core of object detection methods. Good features are half of
the solution for the entire detection task. In most situations, general features are not well-
suited for a particular object type and specific ones need to designed for the task at hand.

• Most features are not invariant to illumination changes. Robust applications require fea-
tures that are resistant to changes in the illumination of the scene in order to ensure that
the system functions in all operating conditions equally well.

• Ensemble classifiers trained with AdaBoost are one of the best-performing classifiers for
many detection tasks. They provide lightning fast prediction capability with no expense
to classification accuracy. Also, a high dimensional feature vector can be used with no
penalty to execution time if the cascading technique is employed. Transforming the clas-
sifier into a soft cascade is possible by rejecting examples as quickly as possible, which
further increases the classification speed.

• Candidate generation is essential to practical applications. Sliding window techniques
have come a long way to provide fast detection even on large images. Still, checking all
possible positions and scales is not feasible. Candidate generation must not miss good

117

candidates and should provide as few proposals as possible. At the same time, it must be
fast enough to not hinder the speed of the whole detection pipeline.

Existing solutions for pallet detection and load handling were studied in section 2.6.
Regarding these systems and methods, we can draw several conclusions. Even though there
are many solutions for automatic load handling, the current ones have important drawbacks. In
the following, we enumerate these and point out how our proposals push beyond the current
methods.

• Most detection systems rely on sensors that provide information only along a 2D scanline.
This prevents such systems to quickly construct a 3D view of the scene for high level
reasoning about the objects present in the scene. Our vision-based approach enables such
a 3D reconstruction and reasoning due to the usage of stereo cameras.

• Many approaches require installation of landmarks (fiducials) on pallets and on the in-
frastructure which increases installation time and cost unnecessarily. Our system does not
need such an operation and is functional without the mounting of special equipment.

• Evaluating the pallet detection module on an extensive dataset is required to demonstrate
the validity of the pallet detection approach. Our system was tested on two extensive
datasets acquired from a real warehouse numbering over 8000 images and 9000 pallets.
The images contain various scenarios from block storage and rack storage. They were
acquired in different lighting conditions and from various viewpoints. Other systems from
the technical literature were evaluated on only 100-300 images, and some of them only in
laboratory conditions.

• Vision-based approaches often make use of unreliable information to detect pallets such as
visible edges and pallet color. Our detector relies on the combination of multiple features
that include edges but also other intensity-based features and texture features. A robust
classifier coupled with candidate generation module enables detection even when the pallet
is partially occluded and when the edges are not clearly visible.

• Most approaches based on laser scanline information need several seconds to perform
pallet detection. Execution time of our system to treat a request is around 1 second with
room for optimization if this is required.

• Perhaps most importantly, our system incorporates many modules that tackle different
tasks. We provide both pallet detection and position estimation for loading operations and
also treat unloading operations. Our system incorporates these modules in a successful
manner and reuses many components to achieve different tasks.

Section 2.7 presented existing approaches for pedestrian detection. Several methods have
good detection performance and efficient execution time. However, for applications on smart-
phones and other mobile devices with limited processing capabilities, simpler methods are re-
quired. We have made changes to existing methods to obtain such approaches in section 3.6.
The suggested improvements lie in the following:

118

• avoid image resizing operations;

• use only a limited number of scales for detection;

• employ features based on integral images which can be quickly calculated.

After the study performed on existing approaches, we have proposed improvements. The
theoretical improvements presented in Chapters 3-5 lie in defining new features types for detec-
tion, optimizing feature extraction and classifier training, and in proposing new algorithms and
methods for specific detection tasks. We highlight the theoretical contributions of our thesis:

• Proposal of new features, called Normalized Pair Differences, on intensity images - These
features take all intensity pairs from a region and compute their normalized pairwise dif-
ferences to obtain a descriptor that is invariant to illumination changes. The large dimen-
sionality of the feature vector ensures a high detection accuracy.

• Design of a fast algorithm for training decision trees with AdaBoost - The algorithm ex-
ecution time is linear in the size of the training set. It is based on presorting all training
instances based on each feature and maintaining the sorted structure during decision tree
splits at training time.

• Design and implementation of several candidate generation methods both for pedestrian
detection and for pallet detection - These methods rely on gradient magnitude to obtain
candidate boxes for objects. Integral image computation enables a fast execution time.

• Design and implementation of an automatic image annotation method that relies on com-
pactness and label transfer - Compactness can be used to estimate the similarity between a
query image and images from the training dataset that are annotated. Several label transfer
methods have been proposed to transfer labels from similar images onto the query image.

• Design of a fast pedestrian detection method by considering only a reduced number of
scales - The scales are chosen based on statistics from the training set. The reduced number
of scales impacts the detection accuracy only slightly as shown in the experimental results.

• Optimizing detection via Lazy Feature Extraction which defers feature calculation until it
is necessary. - By exploiting the fact that several candidates can be eliminated during the
classifier cascade, we have avoided calculating the features for these candidates.

• Performing scale correction for filtered channels - We have estimated the correction factor
required for several types of features for the purpose of avoiding expensive image resize
operations. We have leveraged multimodal information for detection by proposing feature
channels computed from depth, motion and context information.

119

• Proposal of a complex pallet detection method relying on candidate generation and multi-
ple features types - The method combines multiple sources of information, such as: image
intensity features, image gradient, stereo information. The system is capable of treating
unloading operation requests to detect the target position of the pallet that needs to be
unloaded.

All of the presented algorithms were implemented and tested in real systems. Imple-
mentation raised other considerations such as efficient execution, low memory consumption,
robustness, multithreading and communication with other modules. In order to evaluate the de-
tection methods, the construction of evaluation benchmarks were necessary. We enumerate the
applicative contributions of our thesis:

• Implementation of the classification module - The module is used as a building block
in almost all of the implemented object detection systems. It is efficient and capable of
producing state-of-the-art detection accuracy. The classification module was developed
as a C++ project. It provides functions for classifier training and prediction along with
evaluation methods. It can be accessed at 1.

• Creating and manually labeling the Cluj pedestrians dataset - The dataset is the result of
recording urban traffic scenes from Cluj-Napoca with a smartphone placed on the wind-
shield of a car. The video is divided into non-overlapping training set and test set. The
training set contains 3205 bounding boxes with pedestrians and 219 negative examples
(images with no persons) obtained by labeling every 10th frame. In order to extend the
dataset, we have interpolated the bounding boxes, and we have generated an interpolated
training set consisting of 27318 pedestrian rectangles.

• Creating and manually labeling the Viano 2-5 datasets for pallet detection - The dataset
originated from a warehouse from Viano, Italy owned by Elettric80, which was used for
logistics operations. The dataset spans multiple recording sessions and contains over 9000
images with pallets and unloading operations. The dataset is split into training and testing
with each pallet labeled manually by providing the bounding box for it.

• Implementation and testing of the proposed pedestrian detection systems - The different
proposals were tested on multiple datasets: INRIA pedestrians, Cluj pedestrians, Caltech-
USA, KITTI Object Detection. A modified version was installed on a tablet and tested in
real traffic conditions.

• Implementation and testing of the proposed pallet detection system - It was integrated at
two factory locations: Viano, Italy and Bilbao, Spain. The detection system was running
onboard an Automated Guided Vehicle in normal working conditions.

1Classification library repository

120

https://github.com/mrvargarobert/SFML

We have proposed several improvements to pedestrian detection methods. The progress
in this domain was published in several conference papers Varga and Nedevschi (2013a), Varga
et al. (2014) and Costea et al. (2017).

The proposed pallet detection system for an autonomous load handling system was im-
plemented and tested. The different iterations of the system are described in multiple papers:
Varga and Nedevschi (2014), Varga et al. (2015) and Varga and Nedevschi (2016).

The main objective of the thesis was achieved: We have developed several detection
systems relying on candidate generation. The systems achieve good detection accuracy and work
reasonably fast. The scientific impact of the work can be evaluated by the number of published
papers in international conferences and journals. The list of published papers is provided after
the bibliography section.

121

Bibliography

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician, 46(3):175–185.

Amit, Y. (2002). 2D Object Detection and Recognition Models, Algorithms, and Networks. MIT
Press.

Angelova, A., Krizhevsky, A., Vanhoucke, V., Ogale, A., and Ferguson, D. (2015). Real-time
pedestrian detection with deep network cascades. In Proceedings of BMVC 2015.

Arbeláez, P. A., Pont-Tuset, J., Barron, J. T., Marqués, F., and Malik, J. (2014). Multiscale
combinatorial grouping. In CVPR, pages 328–335. IEEE.

Baglivo, L., Biasi, N., Biral, F., Bellomo, N., Bertolazzi, E., Lio, M. D., and Cecco, M. D.
(2011). Autonomous pallet localization and picking for industrial forklifts: a robust range and
look method. Measurement Science and Technology, 22(8):085502.

Bay, H., Tuytelaars, T., and Gool, L. J. V. (2006). SURF: Speeded up robust features. In ECCV,
pages I: 404–417.

Belongie, S., Malik, J., and Puzicha, J. (2000). Shape context: A new descriptor for shape
matching and object recognition.

Benenson, R., Mathias, M., Timofte, R., and Gool, L. J. V. (2012). Pedestrian detection at 100
frames per second. In CVPR, pages 2903–2910. IEEE.

Benenson, R., Mathias, M., Tuytelaars, T., and Gool, L. J. V. (2013). Seeking the strongest rigid
detector. In CVPR, pages 3666–3673. IEEE.

Benenson, R., Omran, M., Hosang, J., and Schiele, B. (2014). Ten years of pedestrian detection,
what have we learned? In ECCV-CVRSUAD. IEEE.

Birchfield, S. and Tomasi, C. (1998). A pixel dissimilarity measure that is insensitive to image
sampling. IEEE PAMI, 20(4):401–406.

Bolles, R. C. and Fischler, M. A. (1980). Random sample consensus: A paradigm for model fit-
ting with applications to image analysis and automated cartography. In Image Understanding
Workshop, pages 71–88.

122

Bostelman, R., Hong, T., and Chang, T. (2006). Visualization of pallets. In SPIE Optics East.

Bourdev, L. and Brandt, J. (2005). Robust object detection via soft cascade. In CVPR, pages II:
236–243.

Breiman, L. et al. (1984). Classification and Regression Trees. Wadsworth.

Broggi, A., Cerri, P., and Ghidoni, S. (2005). A correlation-based approach to recognition and
localization of the preceding vehicle in highway environments. In CIAP, pages 1166–1173.

Byun, S. and Kim, M. (2008). Real-time positioning and orienting of pallets based on monocular
vision. In ICTAI (2), pages 505–508. IEEE Computer Society.

Cai, Z., Saberian, M. J., and Vasconcelos, N. (2015). Learning complexity-aware cascades for
deep pedestrian detection. CoRR, abs/1507.05348.

Carneiro, G., Chan, A. B., Moreno, P. J., and Vasconcelos, N. (2007). Supervised learning of
semantic classes for image annotation and retrieval. IEEE PAMI, 29(3):394–410.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27.

Chen, X., Kundu, K., Zhu, Y., Berneshawi, A. G., Ma, H., Fidler, S., and Urtasun, R. (2015).
3d object proposals for accurate object class detection. In Advances in Neural Information
Processing Systems, pages 424–432.

Cheng, M.-M., Zhang, Z., Lin, W.-Y., and Torr, P. H. S. (2014). BING: Binarized normed
gradients for objectness estimation at 300fps. In CVPR, pages 3286–3293. IEEE.

Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng, Y. (2009). NUS-WIDE: a real-
world web image database from national university of singapore. In Proceedings of the 8th
ACM International Conference on Image and Video Retrieval, CIVR 2009, Santorini Island,
Greece, July 8-10, 2009. ACM.

Chunsheng Fang, A. R. (2009). Probsim-annotation: A novel image annotation algorithm using
a probability-based similarity measure. In 20th Midwest Artificial Intelligence and Cognitive
Science Conference, Fort Wayne, Indiana.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20:273.

Costea, A. D. and Nedevschi, S. (2014). Word channel based multiscale pedestrian detection
without image resizing and using only one classifier. In CVPR, pages 2393–2400. IEEE.

Costea, A. D., Varga, R., and Nedevschi, S. (2017). Fast boosting based detection using scale
invariant multimodal multiresolution filtered features. In CVPR, pages 2393–2400. IEEE.

123

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. Information Theory,
IEEE Transactions on, 13(1):21–27.

Cucchiara, R., Piccardi, M., and Prati, A. (2000). Focus based feature extraction for pallets
recognition. In BMVC.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR,
pages I: 886–893.

Dalal, N., Triggs, B., and Schmid, C. (2006). Human detection using oriented histograms of
flow and appearance. In ECCV, pages II: 428–441.

Daniel Costea, A. and Nedevschi, S. (2016). Semantic channels for fast pedestrian detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2360–2368.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR.

Dollár, P. (2006). Piotr’s Image and Video Matlab Toolbox (PMT). http://vision.ucsd.
edu/˜pdollar/toolbox/doc/index.html.

Dollár, P., Appel, R., Belongie, S., and Perona, P. (2014). Fast feature pyramids for object
detection. PAMI.

Dollár, P., Appel, R., and Kienzle, W. (2012). Crosstalk cascades for frame-rate pedestrian
detection. In ECCV.

Dollár, P., Belongie, S., and Perona, P. (2010). The fastest pedestrian detector in the west. In
BMVC, pages 1–11. British Machine Vision Association.

Dollar, P., Tu, Z. W., Perona, P., and Belongie, S. (2009a). Integral channel features. In BMVC.

Dollar, P., Wojek, C., Schiele, B., and Perona, P. (2009b). Pedestrian detection: A benchmark.
In CVPR, pages 304–311.

Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedestrian detection: An evaluation of
the state of the art. IEEE PAMI, 34(4):743–761.

Duda, R. and Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in
pictures. CACM, 15:11–15.

Dunlop, H. (2010). Scene classification of images and video via semantic segmentation. In
CVPR Workshop on Perceptual Organization in Computer Vision.

Endres, I. and Hoiem, D. (2010). Category independent object proposals. In ECCV, volume
6315, pages 575–588. Springer.

124

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

Endres, I. and Hoiem, D. (2014). Category-independent object proposals with diverse ranking.
IEEE PAMI, 36(2):222–234.

Enzweiler, M. and Gavrila, D. M. (2009). Monocular pedestrian detection: Survey and experi-
ments. IEEE Trans. Pattern Analysis and Machine Intelligence, 31(12):2179–2195.

Ess, A., Leibe, B., Schindler, K., and Gool, L. J. V. (2008). A mobile vision system for robust
multi-person tracking. In CVPR, pages 1–8.

Everingham, M., Gool, L. J. V., Williams, C. K. I., Winn, J. M., and Zisserman, A. (2010).
The pascal visual object classes (VOC) challenge. International Journal of Computer Vision,
88(2):303–338.

Felzenszwalb, P. F. (2001). Object recognition with pictorial structures. In MIT AI-TR.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D. A., and Ramanan, D. (2010). Object detec-
tion with discriminatively trained part-based models. IEEE PAMI, 32(9):1627–1645.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2006). Efficient belief propagation for early vision.
International journal of computer vision, 70(1):41–54.

Feng, S., Manmatha, R., and Lavrenko, V. (2004). Multiple bernoulli relevance models for
image and video annotation. In CVPR (2), pages 1002–1009.

Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsupervised
scale-invariant learning. In CVPR, pages II: 264–271.

Gerónimo, D., López, A. M., Sappa, A. D., and Graf, T. (2010). Survey of pedestrian detection
for advanced driver assistance systems. IEEE PAMI, 32(7):1239–1258.

Grubinger, M., Clough, P., Muller, H., and Deselaers, T. (2006). The iapr benchmark: A new
evaluation resource for visual information systems. In International Conference on Language
Resources and Evaluation, Genoa, Italy.

Guillaumin, M., Mensink, T., Verbeek, J. J., and Schmid, C. (2009). Tagprop: Discriminative
metric learning in nearest neighbor models for image auto-annotation. In ICCV, pages 309–
316. IEEE.

Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching and
mutual information. In CVPR, pages II: 807–814.

Hosang, J. H., Benenson, R., and Schiele, B. (2014). How good are detection proposals, really?
CoRR, abs/1406.6962.

Hough, P. V. C. (1962). A method and means for recognizing complex patterns. U.S. Patent No.
3,069,654.

125

Iba, W. and Langley, P. (1992). Induction of one-level decision trees. In Proceedings of the ninth
international conference on machine learning, pages 233–240.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention for rapid
scene analysis. IEEE PAMI, 20(11):1254–1259.

Jain, A. K. (1989). Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs,
NJ.

Joblove, G. H. and Greenberg, D. (1978). Color spaces for computer graphics. Computer
Graphics (SIGGRAPH ’78 Proceedings), 12(3):20–25.

Kim, J. C., Lee, K. M., Choi, B. T., and Lee, S. U. (2005). A dense stereo matching using
two-pass dynamic programming with generalized ground control points. In CVPR, pages II:
1075–1082.

Kim, W., Helmick, D., and Kelly, A. (2001). Model based object pose refinement for terrestrial
and space autonomy. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space, Montreal, Quebec, Canada.

Kolmogorov, V. and Zabih, R. (2001). Computing visual correspondence with occlusions using
graph cuts. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International
Conference on, volume 2, pages 508–515. IEEE.

Kuhl, F. P. and Giardina, C. R. (1982). Elliptic fourier features of a closed contour. Computer
graphics and image processing, 18(3):236–258.

Labayrade, R., Aubert, D., and Tarel, J.-P. (2002). Real time obstacle detection in stereovision on
non flat road geometry through” v-disparity” representation. In Intelligent Vehicle Symposium,
2002. IEEE, volume 2, pages 646–651. IEEE.

Lampert, C. H. (2010). An efficient divide-and-conquer cascade for nonlinear object detection.
In CVPR, pages 1022–1029. IEEE Computer Society.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR, pages II: 2169–2178.

Li, F. F. and Perona, P. (2005). A bayesian hierarchical model for learning natural scene cate-
gories. In CVPR, pages II: 524–531.

Li, X., Flohr, F., Yang, Y., Xiong, H., Braun, M., Pan, S., Li, K., and Gavrila, D. M. (2016).
A new benchmark for vision-based cyclist detection. In Intelligent Vehicles Symposium (IV),
2016 IEEE, pages 1028–1033. IEEE.

Lim, J. J., Zitnick, C. L., and Dollár, P. (2013). Sketch tokens: A learned mid-level representation
for contour and object detection. In CVPR, pages 3158–3165. IEEE.

126

Linde, O. and Lindeberg, T. (2004). Object recognition using composed receptive field his-
tograms of higher dimensionality. In ICPR, pages II: 1–6.

Ling, H. B. and Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE PAMI,
29(2):286–299.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In ICCV, pages
1150–1157.

Luo, P., Tian, Y., Wang, X., and Tang, X. (2014). Switchable deep network for pedestrian
detection. In CVPR, pages 899–906. IEEE.

Makadia, A., Pavlovic, V., and Kumar, S. (2008). A new baseline for image annotation. In
ECCV, pages III: 316–329.

Marı́n, J., Vázquez, D., López, A. M., Amores, J., and Leibe, B. (2013). Random forests of local
experts for pedestrian detection. In ICCV, pages 2592–2599. IEEE.

Mathias, M., Benenson, R., Timofte, R., and Gool, L. J. V. (2013). Handling occlusions with
franken-classifiers. In ICCV, pages 1505–1512. IEEE.

McCulloch, W. P. W. S. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin
of Mathematical Biophysics, 5:115–133.

Nam, W., Dollár, P., and Han, J. H. (2014). Local decorrelation for improved detection. CoRR,
abs/1406.1134.

Nedevschi, S., Bota, S., and Tomiuc, C. (2009). Stereo-based pedestrian detection for collision-
avoidance applications. IEEE Trans. Intelligent Transportation Systems, 10(3):380–391.

Nygårds, J., Högström, T., and Wernersson, Å. (2000). Docking to pallets with feedback from a
sheet-of-light range camera. In IROS, pages 1853–1859. IEEE.

Ouyang, W. and Wang, X. (2013). Single-pedestrian detection aided by multi-pedestrian detec-
tion. In CVPR, pages 3198–3205. IEEE.

Pages, J., Armangue, X., Salvi, J., Freixenet, J., and Marti, J. (2011). Computer vision system for
autonomous forklift vehicles in industrial environments. The 9th. Mediterranean Conference
on Control and Automation.

Paisitkriangkrai, S., Shen, C., and Hengel, A. v. d. (2014a). Pedestrian detection with spatially
pooled features and structured ensemble learning. arXiv preprint arXiv:1409.5209.

Paisitkriangkrai, S., Shen, C., and van den Hengel, A. (2014b). Strengthening the effectiveness
of pedestrian detection with spatially pooled features. In Computer Vision–ECCV 2014, pages
546–561. Springer.

127

PAN-Robots (2013). Pan-robots plug and navigate robots for smart factories. http://www.pan-
robots.eu/.

Park, D., Zitnick, C. L., Ramanan, D., and Dollár, P. (2013). Exploring weak stabilization for
motion feature extraction. In CVPR, pages 2882–2889. IEEE.

Penatti, O. A. B., Valle, E., and da Silva Torres, R. (2012). Comparative study of global color
and texture descriptors for web image retrieval. J. Visual Communication and Image Repre-
sentation, 23(2):359–380.

Platt, J. et al. (1999). Fast training of support vector machines using sequential minimal opti-
mization. Advances in kernel methodssupport vector learning, 3.

Porikli, F. M. (2005). Integral histogram: A fast way to extract histograms in cartesian spaces.
In CVPR, pages I: 829–836.

Pradalier, C., Tews, A., and Roberts, J. M. (2008). Vision-based operations of a large industrial
vehicle: Autonomous hot metal carrier. J. Field Robotics, 25(4-5):243–267.

Quinlan, J. R. (1992). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Quinlan, R. (1986). Induction of decision trees. Machine Learning, 1:81–106.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworths.

Rowley, H. A., Baluja, S., and Kanade, T. (1998). Neural network-based face detection. IEEE
Trans. Pattern Anal. Mach. Intell, 20(1):23–38.

Russell, C. B., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). Labelme: A database
and web-based tool for image annotation. Int. J. Comput. Vision, 77(1-3):157–173.

Russell, S. and Norvig, P. (1995). Artificial intelligence: a modern approach. Pearson.

Schapire, R. (1990). The strength of weak learnability. MACHLEARN: Machine Learning, 5.

Scharstein, D. and Szeliski, R. S. (2002). A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47(1-3):7–42.

Seelinger, M. J. and Yoder, J.-D. (2006). Automatic visual guidance of a forklift engaging a
pallet. Robotics and Autonomous Systems, 54(12):1026–1038.

Serre, T. and Poggio, T. (2010). A neuromorphic approach to computer vision. Commun. ACM,
53(10):54–61.

Shu, X. and Wu, X.-J. (2011). A novel contour descriptor for 2d shape matching and its appli-
cation to image retrieval. Image and vision Computing, 29(4):286–294.

128

Sivic, J. and Zisserman, A. (2009). Efficient visual search of videos cast as text retrieval. IEEE
PAMI, 31(4):591–606.

Torralba, A., Fergus, R., and Freeman, W. T. (2007). Tiny images. In Massachusetts Institute of
Technology, AI Lab.

Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., and Smeulders, A. W. M. (2013). Selective
search for object recognition. International Journal of Computer Vision, 104(2):154–171.

Ursani, A. A., Kpalma, K., and Ronsin, J. (2007). Texture features based on fourier transform
and gabor filters: an empirical comparison. In International Conference on Machine Vision,
pages 67–72.

van de Sande, K. E. A., Gevers, T., and Snoek, C. G. M. (2010). Evaluating color descriptors for
object and scene recognition. IEEE PAMI, 32(9):1582–1596.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer, Berlin, 2nd edition.

Varga, R., Costea, A., and Nedevschi, S. (2015). Improved autonomous load handling with
stereo cameras. In Intelligent Computer Communication and Processing (ICCP), 2015 IEEE
International Conference on, pages 251–256. IEEE.

Varga, R., Costea, A., Szakats, I., and Nedevschi, S. (2012). Efficient real-time contour match-
ing. In Intelligent Computer Communication and Processing, pages 193–200. IEEE.

Varga, R. and Nedevschi, S. (2013a). Gradient-based region of interest selection for faster pedes-
trian detection. In Intelligent Computer Communication and Processing, pages 147–154.
IEEE.

Varga, R. and Nedevschi, S. (2013b). Label transfer by measuring compactness. IEEE Transac-
tions on Image Processing, 22(12):4711–4723.

Varga, R. and Nedevschi, S. (2014). Vision-based automatic load handling for automated guided
vehicles. In Intelligent Computer Communication and Processing, pages 239–245. IEEE.

Varga, R. and Nedevschi, S. (2016). Robust pallet detection for automated logistics operations.
In VISAPP. IEEE.

Varga, R., Vesa, A. V., Jeong, P., and Nedevschi, S. (2014). Real-time pedestrian detection in
urban scenarios. In Intelligent Computer Communication and Processing, pages 113–120.
IEEE.

Viola, P. and Jones, M. (2001a). Rapid object detection using a boosted cascade of simple
features. Proc. CVPR, 1:511–518.

Viola, P., Jones, M. J., and Snow, D. (2005a). Detecting pedestrians using patterns of motion
and appearance. International Journal of Computer Vision, 63(2):153–161.

129

Viola, P. A. and Jones, M. J. (2001b). Robust real-time face detection. In ICCV, page 747.

Viola, P. A., Platt, J. C., and Zhang, C. (2005b). Multiple instance boosting for object detection.
In NIPS.

Walk, S., Majer, N., Schindler, K., and Schiele, B. (2010). New features and insights for pedes-
trian detection. In CVPR, pages 1030–1037. IEEE.

Walter, M. R., Karaman, S., Frazzoli, E., and Teller, S. J. (2010). Closed-loop pallet manipula-
tion in unstructured environments. In IROS, pages 5119–5126. IEEE.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral
sciences. PhD thesis, Harvard University.

Wojek, C. and Schiele, B. (2008). A performance evaluation of single and multi-feature people
detection. In DAGM.

Wojek, C., Walk, S., and Schiele, B. (2009). Multi-cue onboard pedestrian detection. In CVPR,
pages 794–801.

Xiang, Y., Zhou, X. D., Chua, T. S., and Ngo, C. W. (2009). A revisit of generative model for
automatic image annotation using markov random fields. In CVPR, pages 1153–1160.

Yan, J., Zhang, X., Lei, Z., Liao, S., and Li, S. Z. (2013). Robust multi-resolution pedestrian
detection in traffic scenes. In CVPR, pages 3033–3040. IEEE.

Zabih, R. and Woodfill, J. (1994). Non-parametric local transforms for computing visual corre-
spondence. In ECCV, pages B:151–158.

Zhang, S., Bauckhage, C., and Cremers, A. B. (2014). Informed haar-like features improve
pedestrian detection. In CVPR, pages 947–954. IEEE.

Zhang, S., Benenson, R., and Schiele, B. (2015). Filtered channel features for pedestrian detec-
tion. CoRR, abs/1501.05759.

Zheng, D., Zhao, Y., and Wang, J. (2004). Features extraction using a gabor filter family. In Pro-
ceedings of the sixth Lasted International conference, Signal and Image processing, Hawaii.

Zhou, F., Feng, J.-F., and Shi, Q.-y. (2001). Texture feature based on local fourier transform.
In Image Processing, 2001. Proceedings. 2001 International Conference on, volume 2, pages
610–613. IEEE.

Zhu, C. and Wang, R. (2012). Local multiple patterns based multiresolution gray-scale and
rotation invariant texture classification. Inf. Sci, 187:93–108.

Zhu, Q. A., Yeh, M. C., Cheng, K. T., and Avidan, S. (2006). Fast human detection using a
cascade of histograms of oriented gradients. In CVPR, pages II: 1491–1498.

130

Zitnick, C. L. and Dollár, P. (2014). Edge boxes: Locating object proposals from edges. In
ECCV (5), volume 8693 of Lecture Notes in Computer Science, pages 391–405. Springer.

131

Appendix A

Published Papers

A.1 In ISI rated international journals

1. Robert Varga, Sergiu Nedevschi, ”Label Transfer Using a New Similarity Measure:
Compactness”, Transactions on Image Processing, 2013, no. 12, vol. 22, pp. 4711-4723
(impact factor: 3.625)

2. Lorenzo Sabattini, Mika Aikio, Patric Beinschob, Markus Boehning, Elena Cardarelli,
Valerio Digani, Annette Krengel, Massimiliano Magnani, Szilard Mandici, Fabio Oleari,
Christoph Reinke, Davide Ronzoni, Christian Stimming, Robert Varga, Andrei Vatavu,
Sergi Castells Lopez, Cesare Fantuzzi, Aki Myr, Sergiu Nedevschi, Cristian Secchi, Kay
Fuerstenberg, ”Advanced AGV systems for industrial logistics: the PAN-Robots project”,
IEEE Robotics and Automation Magazine - accepted for publication

A.2 In ISI indexed conference proceedings

3. Arthur Daniel Costea, Robert Varga, Sergiu Nedevschi, ”Fast Boosting based Detection
using Scale Invariant Multimodal Multiresolution Filtered Features”, Computer Vision
and Pattern Recognition, Honolulu, Hawaii, July 21-26, 2017

4. Robert Varga, Sergiu Nedevschi, ”Improved Autonomous Load Handling with Stereo
Cameras”, Intelligent Computer Communication and Processing 2015, Cluj-Napoca, Ro-
mania, pp. 251-255

5. Robert Varga, Andreea Valeria Vesa, Pangyu Jeong, S. Nedevschi, ”Real-time Pedes-
trian Detection in Urban Scenarios”, Intelligent Computer Communication and Processing
2014, Cluj-Napoca, Romania, pp. 113 - 120

132

6. Robert Varga, Sergiu Nedevschi, ”Vision-based Automatic Load Handling for Auto-
mated Guided Vehicles”, Intelligent Computer Communication and Processing, 2014,
Cluj-Napoca, Romania, pp. 239 - 245

A.3 In IEEE Xplore conference proceedings

7. Robert Varga, Sergiu Nedevschi, ”Robust pallet detection for automated logistics op-
erations”, International Conference on Computer Vision Theory and Applications, 2016,
Rome, Italy, pp. 470-477

8. Robert Varga, Sergiu Nedevschi, ”Gradient-based Region of Interest Selection for Faster
Pedestrian Detection”, Intelligent Computer Communication and Processing 2013, Cluj-
Napoca, Romania, pp. 147 - 154

9. Robert Varga, Arthur Costea, Istvan Szakats, Sergiu Nedevschi, ”Efficient Real-time
Contour Matching”, Intelligent Computer Communication and Processing 2012, Cluj-
Napoca, Romania, pp. 193 - 200

10. Arthur Costea, Robert Varga, Tiberiu Marita, Sergiu Nedevschi, ”Refining Object Recog-
nition Using Scene Specific Object Appearance Frequencies”, Intelligent Computer Com-
munication and Processing 2011, Cluj-Napoca, Romania, pp. 179 - 185

In other proceedings of international conferences

11. Szilard Mandici, Robert Varga, Andrei Vatavu, Sergiu Nedevschi, ”Vision-based Per-
ception Systems for Automated Guided Vehicles”, The Fifth International Workshop On
Cyber Physical Systems, 2016, Bucuresti

12. Robert Varga, Mihai Hulea, ”Comparative Analysis of Urban Traffic Control Algorithms”,
International Conference on Automation, Quality and Testing, 2010, Cluj-Napoca, Roma-
nia, Student Session

133

A.4 Independent citations
1. Batista, Natlia C., and Guilherme AS Pereira. ”A Probabilistic Approach for Fusing Peo-

ple Detectors.” Journal of Control, Automation and Electrical Systems 26.6, 2015, pp.
616-629.

2. Tchapmi, Lyne P. ”Pedestrian Detection on Mobile Devices.”, Mobile Vision course final
project, Stanford, 2015

3. Krug, Robert, et al. ”The Next Step in Robot Commissioning: Autonomous Picking and
Palletizing.”, IEEE Robotics and Automation Letters 1.1, 2016, pp. 546-553.

4. Ebsil Sherly, G. T., and Mrs S. Vanitha Sivagami. ”Automatic Annotation of Images using
Label Transfer.”, International Journal of Advanced Research in Computer Engineering
and Technology (IJARCET), Volume 3, Issue 6, June 2014, pp. 2224-2228

5. Yao, Wei, Otmar Loffeld, and Mihai Datcu. ”Application and Evaluation of a Hierarchical
Patch Clustering Method for Remote Sensing Images.”, IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, Vol. 9, Issue: 6, June 2016, pp. 2279
- 2289

6. Huang, Cheng-Ming, Yi-Ru Chen, and Li-Chen Fu. ”Visual tracking of human head and
arms using adaptive multiple importance sampling on a single camera in cluttered envi-
ronments.” IEEE Sensors Journal 14.7, 2014, pp. 2267-2275.

134

Appendix B

Listings of three papers

135

IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Label Transfer by Measuring Compactness
Robert Varga, and Sergiu Nedevschi, Member, IEEE,

Abstract—This paper presents a new automatic image annotation algorithm. First, we introduce a new similarity measure between
images: compactness. This uses low level visual descriptors for determining the similarity between two images. Compactness indicates
how close test image features lie to training image feature cluster centers. The measure provides the core for a k-nearest neighbor
type image annotation method. Afterwards, a formalism for defining different transfer techniques is devised and several label transfer
techniques are provided. The method as whole is evaluated on four image annotation benchmarks. The results on these sets validate
the accuracy of the approach, which outperforms many state-of-the-art annotation methods. The method presented here requires a
simple training process, efficiently combines different feature types and performs better than complex learning algorithms, even in this
incipient form. The main contributions of this work are: the usage of compactness as a similarity measure which enables efficient low
level feature comparison and an annotation algorithm based on label transfer.

Index Terms—Information search and retrieval, scene analysis, object recognition, automatic image annotation

F

1 INTRODUCTION

AUTOMATIC annotation of images in its simplest
form aims at labelling images with keywords from

a dictionary. This procedure is necessary mainly to en-
able content based search and a better organization of
images. If this can be realised automatically, human
users are freed from the painstaking work of parsing
thousands of images. This also ensures that the obtained
labels are not influenced by the specific taste and incli-
nation of the human annotators.

Today more and more images are stored in image
archives and databases both locally on computers and
on the Internet. As multimedia data stored grows in size
it is becoming more difficult to maintain and organize
them. Saving resources such as images in annotated
form allows for efficient access and organization. This
is the primary reason why automatic image annotation
is deemed useful. Labeled images can be retrieved based
on their text labels which reflect their content as opposed
to providing visual content such as an example image for
retrieval.

One of the main problems in this area of research
is the difficulty of inferring high level textual labels
from low level visual features. This is referred to in the
literature as semantic gap to emphasize that a bridge must
be built between the two. Even though low level visual
features such as color, edges and texture can be extracted
easily from images it is most difficult to organize and
summarize them.

Another important issue in the domain concerns weak
labeling. Weak labeling means that even though learning

• Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

• R. Varga and S. Nedevschi are with the Computer Science De-
partment, Technical University of Cluj-Napoca, Romania, E-mail:
robert.varga@cs.utcluj.ro, sergiu.nedevschi@utcluj.ro

algorithms have access to annotated images two factors
may prevent learning from these examples. The first
one is regarding situations where even though a label
is not present, the object or concept represented by it
is contained in the image. Such images are considered
as negative examples by learning algorithms which is
undesirable. The second effect stems from the fact that
labels are not linked to special regions of the image
instead they are given for the image as whole. Thus it is
impossible to determine exactly which bounded area it
refers to.

The goal of this paper is to introduce a new approach
to image annotation, but not a fully optimized method.
In this regard its goal is similar to [1] i.e. to create a
new approach on which more complex methods can be
built. Currently, global feature vectors are employed for
image comparison. This means that a lot of fine detail
is lost when transforming the informative but noisy low
level features to a global one which represent the image
as a whole. Comparing low level features from two
images directly is the other extreme where we encounter
other problems: noise and high computation time. The
proposed approach lies between these two extremes and
enjoys the advantages from low level feature descriptive-
ness while maintaining a low run-time.

The contribution of this work lies mainly in the
definition of compactness and using it as a similarity
measure between images. Even though compactness is
present in many places in the literature in the form of
within-cluster sum of squares, in the form proposed here
it is much more general. Firstly, because it is defined
on two arbitrary sets: the data points and some other
set considered to be centers. Secondly, the definition
contains a general distance function. Thirdly, the norm-
based definition has interesting theoretical properties.
Fourthly, and perhaps most importantly, applying this
measure in the current context is a totally new idea.
We also provide a formalism for defining label transfer

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

techniques based on weight function. This formalism
permits the mathematical description of several label
transfer techniques.

2 RELATED WORK

Research in the domains of object recognition and scene
recognition has produced numerous methods for auto-
matic annotation of images/videos. The purpose of this
section is not to present the state-of-the-art but rather
to put our proposed approach in context. Here, we will
categorise these methods into two high-level classes.
Even though algorithms from one of the class can differ
radically, the underlying approach is the same.

2.1 Keyword-based annotation methods

The first category of methods create models for every
label (or keyword, or concept) from the dictionary. We
refer to a model as representation of a label. At annota-
tion time the relevant labels are determined using these
models and the extracted low level visual features from
the test image. In most of the cases the inclusion of a
label in the annotation is based on a binary decision. One
of the disadvantages of these methods is that annotation
with a keyword is based on a single decision and not
based on multiple possibilities.

There are various types of models employed in the
literature for representing a label: Gaussian Mixture
Models[2] characterize a label as a multimodal Gaus-
sian distribution defined on the feature space, Dirichlet
Distribution[3] is a latent variable model that models
the joint and conditional distribution of of the labels
given the image, SVM classifier models[4] are supervised
learning models that learn a separating plane between
the data points of different classes in the feature space,
Bayesian Hierarchical Models[5] are used to infer labels
by employing a patch based representation of the in-
put image using a Bayesian inference, Multiresolution
Hidden Markov Models[6], [7] learn both spatial and
multiresolution relationships between features, Markov
Random Fields[8] increase annotation performance by
learning spatial relationships between pixels.

Next we describe some methods from this category
in more detail. In Supervised Multiclass Learning[2]
each label is modelled as a Gaussian Mixture Model.
The model corresponding to a specific semantic label is
created by applying a hierarchical version of Expectation
Maximization(EM) on the visual descriptors from each
training image which share the keyword. By substituting
descriptor values from a test image into each probability
density function - the previously obtained GMMs -
one can determine the conditional probability of each
concept given the visual descriptors. Annotations are
formed by taking the first 5 concepts with highest log-
probability. Although this method constructs models in a
very efficient manner, the training process is long mainly
because of EM.

The works from [4], [14] rely on classifying global
image features in the form bag-of-words features for
scene recognition. These features constitute a global
histogram for an image or a region. Each extracted local
feature vector is associated to the closest element from
a codebook of local features and the frequency of each
center from the codebook constitutes the histogram (i.e.
the histogram is the discrete distribution of the local fea-
tures). This histogram construction method corresponds
to average pooling, other alternatives are available such
as max-pooling[11], geometric lp-norm pooling[12], Ge-
ometric Consistency Pooling in Superpixels[13]. A clas-
sifier (e.g. SVM) is trained using these histograms and
the available labels. However, to produce more than
one output one must use multiple binary classifiers
(one for each keyword to form a multiclass SVM). This
makes it necessary to form a training set containing
negative examples, images which are not labelled with
the respective keyword. The assembling of such a set
implies extra work and one can always provide new
negative examples, which clearly is a drawback of binary
classifiers.

2.2 Retrieval-based annotation methods

The second category of methods are based on the idea
that similar images have the same labels. The key point
in these methods is to define similarity measure between
two images. At annotation time one can retrieve similar
images from the database using the similarity measure
and use the labels from these images to form the annota-
tion. To emphasize the difference between this category
and the former one, we mention that here models are
practically constructed for each training image. These
methods make use of label transfer since labels are passed
on from similar images using different strategies to form
annotations. Because the proposed approach falls into
this category we will present similar approaches from
the literature.

A recent publication[1] presents a baseline method for
k-nearest neighbor image annotation. The images are
represented by different types of global features: color
histograms from various color spaces, Gabor and Haar
wavelets for texture descriptors. The similarity between
images will be the inverse of the distance between the
global descriptors of the two images. Different feature
types contribute equally in the calculation of the final
distance value. Label transfer is then obtained in a
greedy manner, giving importance to the first match.

The authors in [9] rely on a large image database
of 80 million images from the Web to perform a k-
nearest neighbor label transfer. The raw pixel values of
32x32 form the global feature vectors and an adaptive
distance function is used as a similarity measure. The
large number of learning examples compensate for the
usage of only low level features. Another large dataset
focusing on scene classification is presented in [10].
The publication evaluates state-of-the-art methods for

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

large-scale scene recognition and makes use of multiple
features.

One can take the matching technique one step further
by allowing more general metrics such as the Maha-
lanobis distance. The parameters of the distance met-
ric are obtained using Metric Learning techniques. The
results using such method are described in [15], [16],
which is one of the currently best performing methods
on several benchmarks.

Other approaches for annotating images are consid-
ered in [17], where each object is described using at-
tributes. The work [18] focuses on learning object at-
tributes together with object categories. In [19] the au-
thors represent the image as a high-level vector of object
detector responses denoted as Object Bank.

3 COMPACTNESS BASED MATCHING

In the following we define the notations used throughout
the paper. Let I = {I1, I2, ..., INi} denote the images
constituting the training database, and L = {l1, l2, ..., lM}
the vocabulary containing the semantic labels (or key-
words, words, concepts, tags). Ground-truth information
is represented by associating to every image from I
a set of labels from L: G = {(I, L)|I ∈ I, L ⊂ L}.
We denote with X the descriptors extracted from a test
image, which is a set of descriptor vectors xi, each
having the dimension D. The descriptors from training
image In are called X(n) = {x(n)

i |i = 1, Tn}, where Tn is
the number of descriptors extracted from image n. The
set of centers extracted from training image n is the set
C(n) = {c(n)

i |i = 1,K}, the set of all centers is notated
with C = ∪C(n). Note that ultimately these are sets of
points in a high dimensional space.

Current annotation methods that are based on image
retrieval extract a global feature vector from each image
and compare these vectors using a distance function. But
is it possible to compare local features? Even though
the global representation enables a fast comparison de-
tails of the particular image is lost. This is the main
reason why it would be better if comparison of local
features could be obtained efficiently. It is obvious that
comparing each local feature from one image to each
from another would be practically infeasible. This is
why we propose to represent each training image with
a set of relevant descriptor centers. These are obtained
using the k-means clustering algorithm[20] applied on
all the descriptor vectors extracted from that particular
image. The k-means algorithm can be substituted with
another method with better performance, but we use
it for simplicity. We need to define then a distance
- a matching score - between some new data points
represented by test image features and a set of centers.
This is where compactness comes in.

3.1 Compactness definition
Compactness is a measure that indicates how close data
points are to a set of centers. The compactness between

a set of points X and the centers C is given by:

c(X,C) =
1

|X|

|X|∑

i=1

min
j
d(xi, cj) (1)

where j ∈ 1,K, |X| denotes the cardinality of the set
X and d(x, y) is a metric defined on the D dimensional
space. The previous definition states that compactness is
the sum of the distances of each point from X to the
closest point from C. Here X refers to any points in
general, and in particular it can be the same as the set
of features extracted from image n, X(n) in which case
|X| = Tn. In our experiments we have found that the L1

distance performs best in this context compared to the
L2 or the Chi-Square metric.

A less restrictive definition uses Lp norms instead of
the distance function. This is useful in practice because
it avoids extracting roots and has interesting properties.

c(X,C) =
1

|X|

|X|∑

i=1

min
j
||xi − cj ||pp (2)

Note, when applying k-means on a set of points X the
objective function to minimize is exactly the compactness
of the centers and the point set X . So the following
are equivalent to the L2 norm compactness applied to
the same points from which the clusters centers were
obtained: within-cluster sum of squares; the minimum
sum of squares; distortion function; potential function
(the literature uses a multitude of terms referring to this
value).

The compactness is always positive since it is a sum of
distances or norms. Also, if we suppose that the points
X are characterized by centers C then:

c(X,C) < c(X,C ′),∀C ′ 6= C (3)

The last inequality(3) holds if k-means truly finds the
set of centers that minimize the compactness. This can
be ensured by running the algorithm multiple times
with different initial center guesses and using different
optimized initialization techniques in order to avoid
local minimas[21]. More details about the k-means al-
gorithm employed here along with specific parameters
are described in section 6.1.

To use compactness as a similarity measure between
two images one must first find their representation in
some feature space denoted by X and Y respectively.
Afterwards, one of the images - consider in this case the
second image - is characterized by the cluster centers of
the features. At this step we obtain the set C from Y .
The similarity is then calculated as the compactness of
the features from the first image to the cluster centers
of the second image, more precisely c(X,C). If the
asymmetry of this measure is an issue the compactness
can be evaluated with the roles of the images swapped,
however in practice the training images will be com-
pactly represented by cluster centers and it is much more
practical to reuse these.

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

3.2 Interpretation and motivation
We now investigate what this measure represents. Sup-
pose we are given a set of points X and we want to
find their compactness relative to some set of centers C.
Consider the following partitioning of X around each
ck ∈ C (Voronoi partitioning):

Xk = {x ∈ X|k = argminj{||x− cj ||}}, k = 1, |C| (4)

This states that the sets Xk contain all the points that
have center ck as the closest center to them. Clearly the
sets Xk are mutually disjoint sets and ∪Xk = X . Then
the following identity is true for compactness that uses
the Lp norm:

c(X,C) =
1

|X|

|C|∑

k=1

|Xk|c(Xk, ck)

=
1

|X|

|C|∑

k=1

∑

x∈Xk

||x− ck||pp (5)

=
1

|X|

|C|∑

k=1

(
∑

x∈Xk

||x− xk||pp + |Xk| · ||xk − ck||pp)

Where xk are the centers of mass for the points Xk.
The decomposition is true because the partitions contain
only the closest elements to ck. Tha last step follows from
a well known lemma involing Lp norms:

∑

x∈X
||x− c||pp =

∑

x∈X
||x− xc||pp + |X| · ||c− xc||pp (6)

We show this in the L2 case in 2D, it can be easily
extended for any p and any dimensions - we use p =
1 and p = 2 in this work. Let xc denote the center of
mass of the points x, so xc = 1

|X|
∑

x∈X x. Consider the
translated coordinate system Ouv that has as the origin
this center of mass. Also for convenience, rotate the axis
such that the point c has the representation (cu, 0). In
this coordinate system we can write for any point from
X , xi = (ui, vi):

||xi − c||2 = (cu + ui)
2 + v2

i (7)

Summing over all the points:

∑

i

||xi − c||2 =
∑

i

cu
2 +

∑

i

(u2
i + v2

i) + 2cu
∑

i

ui

=
∑

i

||xi||2 + |X|cu2 (8)

The last step uses the fact that the center of mass is
now the origin. If the elements of Xk are considered to be
i.i.d. random variables then xk = E[Xk] and c(Xi, xck) =
V ar[Xk] if the compactness uses the Euclidian norm.
The identity (5) shows some important characteristics

of the compactness measure. It is composed out of two
terms: the first term is the variance of the partitions and
the second is the distance between the original centers
and the centers of the partitions Xk. This means that
the compactness will be minimal if the variance is low
and the centers are close. Consequently, compactness
indicates how tightly the points are situated around the
centers. It may happen that c(Y,C) < c(X,C) for some
test data points Y and training data points X . This is the
case when the test points Y have the same centers but a
lower variance than X .

3.3 Comparison to two other similarity measures

We now compare compactness to two similarity mea-
sures and show its advantages over them. The two
alternatives considered are: distances defined on bag-of-
words type histogram descriptors, and the probability of
data points fitting a Gaussian Mixture Model. Other sim-
ilarity measures rely on distances defined on raw image
pixel values or on histograms. Mutual Information[22],
for example, is defined as the difference between the
individual entropies and the joint entropy of the two
images. Compactness assumes that one of the images is
represented succinctly by a set of centers which reduces
computation time.

If the bag of words approach is used then every image
will be characterized by a histogram which reflects the
distribution of the closest prototypes associated to each
feature. The prototypes are k-means cluster centers and
together they form the dictionary. The disadvantage in
this case is that some relevant centers for the current
image may not be present in the global dictionary. This
prohibits the correct comparing of the images since
important centers will be mapped to other centers from
the dictionary. Even if all the relevant centers of the
image are inside the dictionary, if two images have the
same histograms we cannot determine how close or far
they are even though there may be significant differences
between them.

By studying Figure (1) we can analyze two cases where
the histogram representation fails. The 2D training points
which are partitioned in two are marked with black
circles and were drawn from the same two normal dis-
tributions on both figures. The test points corresponding
to two partitions are blue squares. In both cases the
histogram for the test points will coincide with that of
the training points. In the left graph (case a) both the
test and the training points have the same centers, but
the the test points have a larger variance. In the right
graph (case b) the distributions have the same variance
but the centers of the partitions are different. In all
cases histograms will indicate that the test points are
from the same distribution as the training points even
though there are significant differences. This drawback is
eliminated by the compactness which takes into account
both the spread factor - variance - and the displacement
between the centers.

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

0 2 4 6 8
0

2

4

6

8

(a) Same centers

−2 0 2 4 6 8
−2

0

2

4

6

8

(b) Displaced centers

Fig. 1: Two cases were the histogram representation fails

Associating every point to the closest center lies at the
heart of the compactness. Consider now that the image
is characterized by a Gaussian Mixture Model as in [2].
In this case the similarity between it and some feature
set X is the probability that the data fits the model:

P (X|πk,mk,Σk) =
∏

x∈X

K∑

k=1

πkG(x,mk,Σk) (9)

This compares every x with every center mk and thus
always penalizes good matches, since if a point is close
to some mk it will be far from all the other K−1 centers.
Regardless of how well the data fits the distribution
this penalty to the likelihood is always applied. Another
issue with GMM obtained through EM is that on many
occasions fixing the number of centers to a constant
gives poor distributions since two or more centers are
described by only one Gaussian with a covariance matrix
of large values. A model with large covariance values
will tag as similar a wide range of points which is clearly
undesirable. This effect becomes visible if an image is
retrieved as similar for many image queries.

4 LABEL TRANSFER
Label transfer is achieved by constructing a histogram
h. Each of its bins corresponds to a concept from L,
so h ∈ RM . We take into consideration the labels of
the best N matches. After histogram construction, the
labels with the highest corresponding bin value will be
chosen to form the final annotation. Depending on how
the histogram bins are incremented, different transfer
schemes can be obtained.

The result of the matching procedure can be mod-
elled as a function µ, which returns an ordered list
of indexes, based on the compactness between the test
image descriptors and each of the training image centers:
µ(I) =< i1, i2, ..., iN >, where c(X,C(i1)) is the minimal
compactness, the one with i2 is the second smallest and
so on.

We define a weight function ω : 1, N → R. Every label
from the training image Iin increments the correspond-
ing bin in the histogram by ω(n):

h =

N∑

n=1

∑

l∈Ln

ω(n)δl (10)

Ln represents the labels from n-th match, more precisely
from the training image Iin from the list µ(I). These
labels are available from ground-truth information G.
δl ∈ RM is vector a containing zeros on all positions
except at the position uniquely associated to label l
where it is one. By changing the expression of the weight
function ω different types of transfer techniques can be
achieved. In the following we present some particular
cases.

4.1 Equal contribution transfer

In this case every match from the list µ(I) contributes
evenly to the histogram. We have:

ω0(n) = 1,∀n = 1, N (11)

This is the most elementary type of transfer, it can be
viewed as a majority voting scheme. It has the advantage
that it eliminates those labels that only appear in a few
matches. However, if the matching technique is good,
we want to give more importance to the best matches.

4.2 Transfer based on rank

Rank based transfer entails weighing the best matches
more and decreasing the weight exponentially based
on the rank. In this case the weight function has the
following form:

ωa(n) = 2a(1− k−1
N−1),∀n = 1, N (12)

The parameter a can be tuned to obtain the best results.
Of course the base of the exponent can be any number
b > 1 or equivalently we can choose a to be a′log2b.
One can see that ωa(1) = 2a and ωa(N) = 1. Note that
weighing the matches equally (case w0) is a special case
of this function where a = 0. This is why, at parameter
testing these two functions fall into the same category.

Note that this gives importance to matches according
to their position regardless of their distance to the test
instance. It may well be that all matches are very close,
in this case the rank is not relevant.

4.3 JEC type transfer

The technique presented in [1] favours the best match
and the rest of the labels are transferred based on their
appearance frequencies in the training set. This case
corresponds to the following form:

ωJ(1) = 10, ωJ(n) = 1,∀n = 2, N (13)

The histogram values will be updated on the last step
in order to take into account the label frequencies. It is
a greedy technique and thus depends on a good first
match.

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

4.4 Transfer based on distance
To take into account the compactness values cn of each
of the matches, the following weight function is defined:

ωd(n) = 2b(1−cn/c1),∀n = 1, N (14)

This is particularly useful where compactness values are
relevant, however the first match will always receive the
same weight, i.e. because this weight function is relative
to c1 it does not treat the case where even the best match
is far away from the test instance.

4.5 Multiple features
Histogram construction using weight functions can be
easily extended to the case where we intend to use
multiple features. We begin by constructing the his-
togram normally for the first descriptor type. Then we
save the histogram instead of resetting the bins to zero
and repeat the process for the matches obtained from
the other descriptor types. In this way every descriptor
contributes to the final histogram which will provide the
annotations.

In this paragragh we will refer to an instance of the
algorithm that uses a specific kind of local feature simply
as ”a method” in order to simplify explanation. In this
case the definition for the transfer histogram becomes:

h =
∑

m

ηm
∑

n

∑

l∈Lm,n

ω(n)δl (15)

where the index m refers to the method number, ηm is
the weight of the method m and Lm,n is the set of labels
from the n-th match using method m. In our experiments
we have set ηm = 1,∀m, i.e. we weigh each feature
type equally. Note that the order of applying different
methods is irrelevant.

4.6 Considering appearance frequency
After the histogram has been constructed using one of
the weight functions described before, it can be updated
by the frequency of each label from the training set. This
is the number of times it appeared in the training set. For
each non-zero position of the histogram (corresponding
to labels that appeared at least once in the matches) we
add a value proportional to the frequency (fl) of the
corresponding label:

In this case equation (15) is extended as:

h =
∑

m

ηm
∑

n

∑

l∈Lm,n

ω(n)δl + ϕ
∑

l∈∪Lm,n

flδl (16)

The parameter ϕ is set in such a way so that ϕmax fl <
minω(n), i.e. frequency values are secondary to weights.
This may seem to reduce the influence of this factor
but the goal is to use this information only in uncertain
cases, for example when we have two concepts with
the same histogram value. JEC type transfer requires the
histogram to be constructed using the previously defined
equation.

Algorithm 1 Training

Ensure: centers from all training images.
1: for all training images In do
2: Extract local features X(n)

3: Apply k-means using K centers to obtain C(n)

4: Save centers
5: end for

Algorithm 2 Testing

Require: Training image centers.
Ensure: Annotations for every test image.

1: for all test images I do
2: Extract local features X
3: Sample X to get B
4: for all training image In do
5: find c(B,C(n))
6: end for
7: Obtain the first N best matches using µ(I)
8: Transfer ground-truth labels from matches to ob-

tain annotation using (10)
9: end for

5 ALGORITHM DESCRIPTION

In this section we provide the high level steps required
for the training process and for effective image anno-
tation. Also the effect of different parameters on the
execution time is discussed. The training involves the
steps described by Algorithm 1.

We have fixed the number of clusters for the k-means
algorithm to K = 20 for all our experiments based
on some preliminary tests. If multiple features will be
used for annotation it is necessary to run the training
for each feature type. Note that in this way we form
the building blocks for more complex methods that use
different feature combinations and the training is done
only once for each feature type.

In order to annotate an image the following operations
from Algorithm 2 are to be executed. If multiple features
are used then these operations are performed for each
feature type and the equation (15) or (16) is used once
at the end to form the transfer histogram.

6 EXPERIMENTAL RESULTS

6.1 Implementation Details
All tests for the Corel5k dataset were run on a machine
that has an Intel 2.66 GHz processor with two cores and
2GB RAM. For the larger datasets we performed the
tests on the computing grid of the Technical University
of Cluj-Napoca[23]. The number of parallel processes
was set to 200 or 400. The application was implemented
using C/C++. Libraries included were: OpenCV - vision
library, vlfeat - for SIFT extraction. K-means implemen-
tation provided by OpenCV[24] was used running each
time for a maximum of 200 iterations, with tolerance
of 10−7, five trials and kmeans++ center initialization

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

by Arthur and Vassilvitskii[21]. The vlfeat library is
utilized for dense SIFT extraction[25]. Multithreaded
implementation was developed for matching and SIFT
extraction in parallel from multiple image channels. The
tests on the Corel5k involving high dimensional descrip-
tors (SIFT and different combinations) were run on two
threads in parallel.

6.2 Local descriptors
This section contains details about the local descriptors
used for testing. A summary of the local descriptors is
given in Table 1. Feature extraction strategy employed is
dense sampling on a grid with displacements of 2 pixels.
Each of the following paragraphs describes a different
feature type.

The first feature type we present is a simple color
descriptor that is obtained by first resizing the image
to maximum a dimension of 64 pixels, while retaining
the aspect ratio. This operation performs an averaging
and additionally it reduces execution time. Afterwards,
the feature vector at each pixel will contain the triplets
from RGB, Lab and HSV color spaces. Feature dimension
is 9. Despite its simplicity, this descriptor can produce
surprisingly good results in this context. The importance
and the efficiency of color descriptors is demonstrated
by the fact that almost all annotation methods make use
of this information. It is natural then to include a local
descriptor based on color in our experiments.

A recently published texture descriptor called
WLD[26] is also tested. Here we use a local histogram
variant of the descriptor. We extract the excitation and
gradient orientation values at every pixel and construct
histograms of these on 8x8 blocks. These histograms
will be the local features. We use the single resolution
variant with 8 angle bins, 6 excitation bins and the
parameter S (the number of excitation subbins) is set to
1. Final feature dimension is 48. This texture descriptor
was evaluated on the Brodatz texture benchmark and
has obtained superior results compared to SIFT, Gabor
and several other texture descriptors (see [26] for
results).

Histogram of Oriented Gradients(HOG) descriptors
are extracted both from a grayscale image and from all
three channels of the RGB image. The number of angle
bins is set to 12. Feature dimension is 12, respectively
36 for color type. This descriptor was successfully ap-
plied for pedestrian detection [27] and other objects as
well[28].

Discrete Cosine Transform coefficients have been uti-
lized with great success in SML[2]. The coefficients are
obtained on a 8x8 region using matrix multiplication and
dimension reduction can be obtained easily be consider-
ing only the upper left corner of the resultant matrix[29].
We use the descriptors from the 3 channels of the Lab
color space.

Scale Invariant Feature Transform(SIFT[30]) features
are extracted on a dense grid from the image trans-
formed into the Opponent Color Space. This sampling

TABLE 1: Local descriptors employed

Descriptor Type Dimension
RGB color 3
Lab color 3
HSV color 3

RGB+Lab+HSV color 9
WLD texture 48
HOG texture 12

color HOG texture 36
DCT texture 63/192

dense SIFT texture 128
dense SIFT-OCS texture 384

Law texture 10
Gabor texture 12

strategy has been proven to be the most effective in
[31]. This descriptor has the largest total dimension from
the ones used here. SIFT has properties such as scale
and rotation invariance which are very useful for object
recognition.

Law texture descriptors[32] are obtained by filtering
the image with the 16 Law convolution kernels. The
result from the outer product of 4 one dimensional
kernels and does not include the W kernel. No energy
is calculated, but instead these raw values are used. The
resulting descriptor is of size 10.

Another texture descriptor is obtained by filtering the
image with different Gabor filters. The filters have 4
different orientations and 3 different scales, which is
enough to represent 97% of the image energy [33]. The
results of the filters form a the feature vector at each
pixel. The applications of Gabor filters include mainly
texture descriptors [34], [35].

Visual descriptor extraction using dense sampling can
yield many feature vectors. If the image has height h
and width w and a sampling strategy with displacement
d is used then we have: |X| =

⌊
h ·w/d2

⌋
, where bxc

indicates the floor function. Using every vector from
the set for compactness calculation would be practically
inefficient (high execution time). This is why a uniform
sampling is applied on the set X and the compactness
is calculated on the reduced set B. This is not the
same as increasing the grid spacing since it may be
that |X| 6= k2|B|, for some natural number k. So let
B = {bi = xi∆|i∆ < |X|}, i.e. B contains every ∆-th
sample from X . In this case |B| = b|X|/∆c and we refer
to the cardinality of the set as the bag size.

6.3 Time complexity analysis
The execution time for annotation is dominated by the
matching process. The time complexity of matching us-
ing compactness is given by:

O(T ·B ·K ·D)

where T is the number of training images; B is the ’bag’
size - the number of features selected for compactness

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

calculation; K is the number of clusters for k-means;
D is the dimension of the feature vector. This can be
optimized by halting distance calculation if the current
distance exceeds the minimum distance obtained up to
that point. The execution time grows linearly with the
feature dimension, this is why it is recommended to
apply dimension reduction techniques such as Principal
Component Analysis (PCA) on large feature vectors
such as SIFT. Matching can be parallelized easily at the
highest level (at T) by dividing the training set into
groups for each thread. We compare this to a Bag-of-
words approach where the histogram construction and
the matching costs:

O(F ·D · C + T · C)

where F is the number of features extracted from an
image, C is the number of keywords from the codebook.
This shows that the first approach requires more time
and is linearly proportional to the number of training in-
stances. However, methods of later type usually require
a much larger feature vector (large D). Even though the
time complexity is high, relatively low execution time
can still be achieved. This is demonstrated by providing
the execution times of different cases in the experimental
results section.

6.4 Evaluation protocol
The protocol for evaluation follows that which was
already outlined in previous works (such as [2]) in order
to enable comparison between methods. The different
databases are split into two disjoint sets: training set
- used for extracting k-means centers; test set - for
the evaluation of the method. No information about
the ground-truth labels of the test set are used when
generating the automatic annotations. The automatically
generated annotations are afterwards compared with the
human given ones to obtain metric values.

We label each image with exactly five labels. For each
keyword from the dictionary that appeared at least once
in the test ground-truth we calculate the precision and
recall values. For each label we define the following
numbers:
• lh - the number of times l appears in the test ground-

truth;
• la - the number of times l was provided in an

annotation by the automatic annotation method;
• lc - the number of correct annotations with the label
l.

In this setting the precision is p = lc/la and the
recall is r = lc/lh. In order to obtain a global score we
find the average precision and recall. These are obtained
by averaging the precision and recall values of all the
keywords which appear at least once in the test ground-
truth. Another metric used is the number of non-zero-
recalls. This is calculated as: nzr =

∑
lic>0 1.

Additionally we introduce an indicator rarely used
for evaluating annotation methods. The F1 score is the

harmonic mean of the average precision and the average
recall. It enables us to look at a single value for finding
the best parameters and makes it easier to compare
different annotation methods. By taking the harmonic
mean, the score is closer to the lesser value, so a high
F1 score can only be achieved with both a high precision
and high recall.

6.5 Evaluation on Corel5K
We performed extensive testing on this database using
different underlying features for the matching method.
The structure of this database has been described in
the previous works (e.g.[2]). We mention only that the
training set has 4500 images and the test set consists of
500 images, the size of the dictionary is 374. The metric
values for matching using only one type of feature, as
well using multiple features are shown in Table 3 . The
numbers next to the feature type indicate the dimension
of the descriptor vector.

To clearly show the advantage of using compactness
over histogram distances we provide test results on the
Corel5k using the same features and transfer method wJ

as in [1]. In addition we provide the best results obtained
using one of the proposed transfer methods - wa refers to
the rank based exponential weighing with the subscript
parameter a having the optimal value. Table (2) shows
that in all cases compactness ensures a higher average
precision and the same or higher recall. We have used
L1 metric for comparison and not Kullback-Leibler di-
vergence for the Lab colorspace as in [1]. The proposed
weighing further improves score values boosting both
precision and recall.

To find the best parameters we have performed a
grid search varying several parameters in the ranges
given below. Test time can be saved because matches are
obtained once for each bag size and afterwards different
transfer techniques can be applied. The results with the
highest F1 score are presented in Table (3). As mentioned
before, we determined that L1 distance behaves best
in this context for compactness calculation. Parameter
ranges used for testing are:
• bag size - |B| ∈ {50k|k ∈ 1, 10};
• neighbourhood size - N ∈ {5, 10, 15};
• weight function type - wa, wJ or wd;
• weight function wa parameter - a ∈ 0, 5;
• weight function wd parameter - b = 300;
• considering frequency or not - ϕ ∈ {0, 10−3, 2·10−3};
• number centers per image - K = 20.
The Table 3 contains metric values using different

features on the Corel5k benchmark. Entries are ordered
based on F1 measure that guided us in deciding which
method is better. The last column shows the average
execution time in seconds for a single image annota-
tion using a single threaded execution on the machine
described in section 7.1. (’-’ signifies no data available).
Execution time is given for the best parameter combina-
tion and it depends on bag size. Simple color descriptors

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

TABLE 2: Comparison using the same feature type

Feature Precision Recall NZR F1
JEC+RGB 20 23 110 21.39
JEC+Lab 20 25 118 22.22
JEC+HSV 18 21 110 19.38

Comp+RGB+wJ 21.98 24.38 121 23.12
Comp+Lab+wJ 21.29 24.80 123 22.91
Comp+HSV+wJ 19.33 26.94 128 22.51

Comp+RGB+w5 21.58 26.85 123 23.93
Comp+Lab+w5 22.34 25.62 123 23.87
Comp+HSV+w3 21.95 26.68 124 24.09

behaved surprisingly well compared to different texture
descriptors. Also the low dimensionality of this feature
permits a very low execution time. Color variants of
the texture descriptors perform better than gray-scale
ones. The lower part of the table contains combinations
of features. This confirms that the annotation method
successfully combines multiple features and produces
better results than using individual features.

We now compare our results with previous state of
the art results in Table 4. Each percentage is taken from
the indicated reference. Optimal configuration found by
our tests is: using color descriptors along with DCT63
and SIFT, with the parameters set to: K = 20, B =
200, ϕ = 2 · 10−3, N = 5, a = 3 (last line from Table
(3)). We note that Compactness based methods produce
similar results to SML when using the same features (see
DCT63 and DCT192 in Table 3) but using SIFT proves
to be better. By efficiently utilizing multiple features our
simple approach outperforms many methods from the
literature based on the F1 score including MBRM, SML,
JEC, ProbSim. MRFA does not provide exactly 5 labels
at annotation which helps to achieve higher scores. The
better results of TagProp can be explained by the fact that
it employs Metric Learning which could also be used in
our context to improve results.

6.6 Effect of parameters

Some general remarks can be made about the influence
of different parameters on the metric values. We analyse
results from Corel5k in detail. It is possible that the
behaviour on other databases is different. The effect of
each parameter is analysed by fixing the other ones
to their optimal values. Multiple cases are considered
where necessary.

Increasing the bag size B has moderate effect on
score values. This can be studied using Figure (3). Score
values increase and oscillate, and in some cases reach
a maximum for fairly low values of B. Because bag
size linearly influences the execution time lower bag size
values such as 100 or 200 can be utilized. This is practical
because it achieves faster execution while maintaining
near-optimal performance. The oscillating behaviour is
due to the errors introduced from sampling.

TABLE 3: Compactness based annotation results using
different feature types on Corel5k

Feature Precision Recall NZR F1 exec
Gabor(12) 7.46 8.67 76 8.02 -
HOG(9) 11.22 11.57 85 11.40 -
Law(9) 13.82 17.56 105 15.47 -
color
HOG(36)

14.36 17.57 109 15.80 -

WLD(48) 16.99 18.42 108 17.67 1.83
SIFT(128) 17.00 24.94 122 20.21 -
CSIFT(256) 19.49 24.51 120 21.72 -
color(9) 22.71 27.06 128 24.69 1.39
DCT(63) 22.32 28.27 129 24.95 0.48
DCT(192) 22.82 29.02 129 25.55 5.28
SIFT-
OCS(384)

23.75 31.23 140 26.98 22.58

WLD +
color(57)

26.45 27.88 120 27.15 4.4

SIFT +
WLD +
color(441)

30.19 31.99 131 31.06 18.23

SIFT +
DCT63 +
color(456)

30.15 32.17 133 31.13 20.62

TABLE 4: Comparison with state-of-the-art Corel5k

Method Precision Recall NZR F1
MBRM[36] 24 25 137 24.48

SML[2] 23 29 137 25.6
JEC[1] 27 32 139 29.2

ProbSim[37] 25.4 36.5 106 29.7
Compactness 30.15 32.17 133 31.13

MRFA-grid[36] 31 36 172 33.31
TagProp[15] 32.7 42.3 160 36.8

We now study the influence of neighbourhood size
N . Better results were obtained using smaller N val-
ues. This may be due to the relatively small size of
the database, so most of the images have few good
matches among the training instances. We have found
that N = 5 produces best results for individual features
and on some occasions N = 10 for multiple feature
case. Further fine-tuning could involve experiments con-
sidering N ∈ {1, 2, 3, 4}. This also demonstrates that
the matching technique is efficient because the first few
matches provide good labels to transfer.

Figure (4) contains metric values using different trans-
fer techniques. We have associated a = −2 to JEC-type
transfer and a = −1 to distance-based transfer. We have
found that in almost all cases weighing based on rank
performs best. In some cases we obtain better results
with ωd or ωJ , but the general recommendation is ωa.
The scores with a = 0 are almost always lower than
the optimal scores obtained using a = 3 or a = 4.
Overall tendency here suggests to accord significantly
more importance to the best match. To provide a more
encompassing overview Table (6) shows score values

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

(a) Test image (b) Match 1 (c) Match 2 (d) Match 3 (e) Match 4 (f) Match 5

Fig. 2: Sample matches and annotation from Corel5k - Predicted labels for test image a): water, beach, tree, people,
sand. Showing only best five matches based on SIFT features. Note that incorrect labels from match 2 (confusion
between sand and snow) get filtered out because of the transfer technique.

TABLE 5: Sample annotations using color+DCT63+SIFT from Corel5k

Prediction people swimmers
pool water athlete

stone pillar temple
people sculpture

people outside mu-
seum dance tree

cars tracks formula
wall straightaway

sky mountain tree
snow sky

Ground-
truth

people pool swim-
mers water

pillar temple sculp-
ture stone

tree people dance
outside

cars formula tracks
wall

clouds mountain
sky snow

using only RGB features, every row corresponds to a
constant bag size and every column contains a different
transfer technique.

If we consider frequency information it can increase
overall performance (F1 score). However, this almost
always entails an increase in precision and a decrease
in recall and NZR values. The reason for this is that
favouring the more frequent terms reduces the chance to
annotate with rare labels. The influence of the frequency
was tested using 3 different values: zero influence, mini-
mal influence setting ϕ = maxfl as suggested, and twice
the previous value. The second case give higher F1 score
in general.

Computation time varies in accordance with the time
complexity formulas derived in section 5. It is linear with
respect to feature dimension and also with respect to
bag size. These two parameters can control the execution
time, modifying the bag size has only minor negative ef-
fects on annotation performance. Even though the IAPR-
TC12 and ESP-game datasets are much larger annotation
time still remains fairly low due to the optimizations
mentioned (halting calculation when distance exceeds
the current N -th maximum).

6.7 Evaluation on IAPR-TC12

This image collection consists of 20,000 still natural
images taken from locations around the world and
comprising an assorted cross-section of still natural
images[38]. The same images are used from the IAPR-
TC12 database as those in [1] in order to compare results
in a correct manner. This database is larger, the training
set numbers 17825 images and the test set contains
1980 images with 291 labels. The image annotations and
test/training split is obtained from the files located at

50 100 150 200 250 300 350 400 450 500
28.5

29

29.5

30

30.5

31

31.5

bag size B

F
1

Fig. 3: The influence of bag size - color+DCT63+SIFT

−2 −1 0 1 2 3 4 5
23

24

25

26

27

28

29

30

31

32

transfer type ω
a

F
1

(a) multiple features

−2 −1 0 1 2 3 4 5
14
15
16
17
18
19
20
21
22
23
24

transfer type ω
a

F
1

(b) RGB only

Fig. 4: The influence of transfer type

the web-page 1.
The metric values are calculated using all the labels

from the ground-truth. This is the right way to obtain
the number of correct labels however recall values will
be lower. This is so because we only provide 5 labels,

1. Makadia annotation files

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

TABLE 6: The influence of parameters on F1 score

TABLE 7: Compactness based annotation results using
different feature types on IAPR-TC12

Feature Precision Recall NZR F1 exec
color(9) 23.89 23.63 216 23.76 2.0
DCT(63) 25.24 24.64 225 24.94 6.3
SIFT(384) 31.82 32.45 245 32.13 17.0

SIFT+DCT+color 42.9 22.6 228 29.6 44.0

TABLE 8: Comparison with state-of-the-art IAPR-TC12

Method Precision Recall NZR F1
MBRM[39] 24 23 223 23.48

JEC[1] 28 29 250 28.49
Compactness 42.9 22.6 228 29.6
TagProp[15] 46.0 35.2 266 39.88

and in cases where in the ground-truth there are more
than 5, we inevitably end up marking some labels as not
recalled.

We provide some sample annotations for this dataset
in Table 9. Notice that a lot of images have much more
labels than 5. The results for this database (Table 7)
again indicate that fairly good results can be obtained
using simple color descriptors. However, SIFT features
outperform other features mostly by reaching an F1
score of 32.13. It can be seen that the combination of
different features is more successful on this database.
Average precision value increases with 11%. Note that
combining features results in lower recall and higher
precision values. This is natural since more features
provide more ”opinions” about the correct label and the
consensus tends to reflect the truth.

The comparison made in Table 8 shows that Com-
pactness obtains much better precision than MBRM and
JEC (by 15%). Recall and NZR values are lower, but we
mention here that using JEC-type transfer similar values
were obtained as in [1].

TABLE 10: Compactness based annotation results using
different feature types on ESP-game

Feature Precision Recall NZR F1 exec
Law-color(30) 16.36 16.07 217 16.22 2.32

WLD(48) 19.65 17.33 228 18.42 3.61
color(9) 19.73 19.28 230 19.50 1.56
DCT(63) 21.49 20.50 236 20.99 7.92
SIFT(384) 22.75 20.42 230 21.52 35.13

WLD+color 31.07 19.78 227 24.17 11.63
SIFT+DCT+color 34.67 21.29 233 26.38 39.45

TABLE 11: Comparison with state-of-the-art ESP-game

Method Precision Recall NZR F1
JEC[1] 22 25 224 23.4

Compactness 34.67 21.29 233 26.38
TagProp[15] 39.2 27.4 239 32.25

6.8 Evaluation on ESP game
This dataset is the result of an experiment involving
collaborative human annotation. The subset of pictures
used is the same as in[1]. More exactly: 19659 training
images, 2185 test images, annotated with 269 different
labels. An advantage of this set is that it is a result of an
agreement between multiple annotators, so annotations
are not biased by individual preference.

Table 10 contains results using a limited set of features
and their combination. Five sample annotations are pro-
vided in Table 12. In this case WLD texture descriptor
and color descriptors collaborate well. This may be so
because in this set texture can discriminate instances
better than in previous datasets. To enable comparison
with the existing methods we summarize other results
in Table 11.

6.9 Evaluation on NUS-WIDE
NUS-WIDE[40] is a large image dataset consisting of
269,648 images and associated tags from Flickr. This was
created by a research team from the National University
of Singapore, who also provide tags for 81 concepts. It is
suitable for testing label transfer annotation algorithms.
We have obtained this dataset by downloading the im-
ages using the provided URLs, however 36515 images
are either missing or are blank, which can be detrimental
for annotation precision.

We have carried out experiments using the proposed
color descriptor and we have compared the obtained
results with the NUS-wide Lab histogram based k-NN
annotation baseline [40]. The only difference between the
two methods is the distance calculation. In the first case
we have used compactness and in the second case the L1
distance between global Lab histograms as in [40]. We
could not directly use the feature vectors provided with
the dataset because they are global feature vectors and
compactness operates on local features, but the under-
lying feature type is the same. For every test image we

IEEE TRANSACTIONS ON IMAGE PROCESSING 12

TABLE 9: Sample annotations using color+DCT63+SIFT from IAPR-TC12

Prediction view river jungle
middle cloud

pool people woman
tree man

building front orna-
ment trouser jacket

bike country helmet
side short

sky mountain cloud
desert bush

Ground-
truth

cloud hill jungle
middle palm range
river view

chair man people
pool woman

building column
front jacket
ornament person
trouser

bike cap country
cycling cyclist hand
helmet jersey racing
road short side

cloud desert moun-
tain shrub sky

TABLE 12: Sample annotations using SIFT from ESP-game

Prediction people sky crowd
tree blue

man black dog
grass tree

coin gold round cir-
cle money

sky blue people
tower building

old man shirt
glasses book

Ground-
truth

crowd man people
pole sky tree

black dog grass
green guy man run
shoes white

circle coin gold old
round square

blue building peo-
ple sky tower

book glasses green
hand man old shirt

generate 5 labels. If the ground truth information speci-
fies n labels we evaluate the performance on the first m
labels, where m = min(5; n). We present the annotation
performance in Figure 5. It is given in terms of precision
for each concept and in terms of mean average precision
(MAP). Concepts with more training examples - such as
clouds, person, sky - have a significantly higher precision
value for both methods. The k-NN based method has
more concepts with non-zero precision and performs
better for some concepts with more training examples.
However, for most concepts compactness provides a
higher precision. The MAP obtained with compactness
is of 6.21 in comparison with 4.8 corresponding to the
k-NN based classification algorithm.

7 CONCLUSIONS

In this paper we have presented a new technique for
matching images. This can be employed in a nearest
neighbour image annotation method. Several transfer
techniques have been proposed and analysed.

In the experimental section we have provided metric
values on four benchmarks to validate the presented
method. This demonstrates that compactness outper-
forms the histogram distance. Furthermore the proposed
transfer technique improves score values. The annotation
method using multiple features does better than most the
state-of-the-art algorithms. We stress that our goal was
to show that compactness can be considered a useful
alternative to image matching and not to provide a
complete algorithm. This would entail careful feature se-

lection, balancing the weights of each feature, changing
the distance functions.

We enumerate the advantages of the presented ap-
proach:
• conceptually simple;
• simple and fast training process;
• flexible - can easily work with different underlying

low level image descriptors;
• can efficiently combine different feature types (e.g.

color and texture);
• does not need segmented images;
• does not need negative examples for training;
• robust - even with untuned parameters provides

good results;
• competes with and outperforms complex learning

algorithms.
As a drawback, we mention that the matching phase is

more time consuming than some currently used methods
(such as distance between global histograms from the
bag-of-words approach) and is linearly dependent on
the database size, like any k-NN matching annotation
algorithm. However, we have shown by indicating exe-
cution times that even so, annotation time is well within
acceptable ranges. This is why this approach can be
utilized to provide good quality annotations in 5-10
seconds on the machine described in Section 7.1.

Contributions that result from the presented research:
• original idea to use compactness as a ”distance”

measure between images, that enables us to effec-
tively compare local descriptors;

• providing a formalism for defining label transfer

IEEE TRANSACTIONS ON IMAGE PROCESSING 13

Fig. 5: Precision values for each concept and MAP on the NUS-WIDE dataset

techniques;
• devising and testing of elementary transfer types;
• validation and result analysis on 4 different datasets

that proves the efficiency of the method.
Future work will involve experimenting with different

feature types and their various combinations in order to
obtain optimal results. Different implementation ideas
for matching execution time reduction are under con-
sideration. New weight function types for transfer are
also under research. Another variant of the algorithm
would be to use GMMs to represent images instead of k-
means centers. It would also be desirable to find distance
functions that weigh important features more.

ACKNOWLEDGEMENTS

This work was supported by the Romanian Ministry of
Education and Research, through the project ”SmartCo-
Drive”, code PN II PCCA 2011 3.2-0742, from 03.07.2012
(2012-2015). The authors would like to thank Kobus
Barnard for providing the Corel5K data set. We thank
A. Makadia for making public the annotations and train-
ing/testing splits employed in his work for the IAPR-TC
and ESP datasets.

REFERENCES

[1] A. Makadia, V. Pavlovic, and S. Kumar, “A new baseline for image
annotation,” in ECCV, 2008, pp. III: 316–329.

[2] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Su-
pervised learning of semantic classes for image annotation and
retrieval,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 29, no. 3, pp. 394–410, Mar. 2007.

[3] Blei, D. M., Jordan, and M. I., “Modeling annotated data,” in Pro-
ceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. Multimedia
information retrieval, 2003, pp. 127–134.

[4] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene cate-
gories,” in CVPR, 2006, pp. II: 2169–2178.

[5] F. F. Li and P. Perona, “A bayesian hierarchical model for learning
natural scene categories,” in CVPR, 2005, pp. II: 524–531.

[6] J. Li and J. Z. Wang, “Real-time computerized annotation of pic-
tures,” IEEE Transactions Pattern Analysis and Machine Intelligence,
vol. 30, no. 6, pp. 985–1002, Jun. 2008.

[7] J. Li and J. Z. Wang, “Automatic linguistic indexing of pictures by
a statistical modeling approach,” IEEE Trans. Pattern Anal. Mach.
Intell, vol. 25, no. 9, pp. 1075–1088, 2003.

[8] A. Llorente, R. Manmatha, and S. M. Rüger, “Image retrieval
using markov random fields and global image features,” in CIVR,
S. Li, X. Gao, and N. Sebe, Eds. ACM, 2010, pp. 243–250.

[9] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny
images: A large data set for nonparametric object and scene
recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 30, no. 11, pp. 1958–1970, Nov. 2008.

[10] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN
database: Large-scale scene recognition from abbey to zoo,” in
CVPR. IEEE, 2010, pp. 3485–3492.

[11] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in CVPR, 2005, pp. II: 994–1000.

[12] J. Feng, B. Ni, Q. Tian, and S. Yan, “Geometric `p-norm feature
pooling for image classification,” in CVPR. IEEE, 2011, pp. 2697–
2704.

[13] L. Cao, R. Ji, Y. Gao, Y. Yang, and Q. Tian, “Weakly supervised
sparse coding with geometric consistency pooling,” in CVPR.
IEEE, 2012, pp. 3578–3585.

[14] H. Dunlop, “Scene classification of images and video via semantic
segmentation,” in CVPR Workshop on Perceptual Organization in
Computer Vision, 2010.

[15] M. Guillaumin, T. Mensink, J. J. Verbeek, and C. Schmid, “Tag-
prop: Discriminative metric learning in nearest neighbor models
for image auto-annotation,” in ICCV. IEEE, 2009, pp. 309–316.

[16] J. Verbeek, M. Guillaumin, T. Mensink, and C. Schmid, “Image
annotation with tagprop on the MIRFLICKR set,” in 11th ACM
International Conference on Multimedia Information Retrieval, 2010.

[17] A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth, “Describing
objects by their attributes,” in CVPR, 2009, pp. 1778–1785.

[18] S. J. Hwang, F. Sha, and K. Grauman, “Sharing features between
objects and their attributes,” in CVPR. IEEE, 2011, pp. 1761–1768.

[19] L.-J. Li, H. Su, E. P. Xing, and F.-F. Li, “Object bank: A high-
level image representation for scene classification semantic feature
sparsification,” in Advances in Neural Information Processing Sys-
tems 23: 24th Annual Conference on Neural Information Processing
Systems 2010. Proceedings of a meeting held 6-9 December 2010,
Vancouver, British Columbia, Canada. Curran Associates, Inc, 2010,
pp. 1378–1386.

[20] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transac-
tions on Information Theory, vol. 28, pp. 128–137, 1982.

[21] Arthur and Vassilvitskii, “k-means++: The advantages of careful
seeding,” in SODA: ACM-SIAM Symposium on Discrete Algorithms
(A Conference on Theoretical and Experimental Analysis of Discrete
Algorithms), 2007.

[22] P. A. Viola and W. M. Wells, “Alignment by maximization of mu-
tual information,” International Journal of Computer Vision, vol. 24,
no. 2, pp. 137–154, Sep. 1997.

[23] E. Cebuc, A. Suciu, K. Marton, S. Dolha, and L. Muresan, “Imple-
mentation of cryptographic algorithms on a grid infrastructure,”
in aqtr, vol. 2, pp.1-6, 2010 IEEE International Conference on Automa-
tion, Quality and Testing, Robotics (AQTR), 2010.

Robust pallet detection for automated logistics operations

Robert Varga and Sergiu Nedevschi
Technical University of Cluj-Napoca, Romania
{robert.varga, sergiu.nedevschi}@cs.utcluj.ro

Keywords: object detection; pallet detection; stereo reconstruction

Abstract: A pallet detection system is presented which is designed for automated forklifts for logistics operations. The
system performs stereo reconstruction and pallets are detected using a sliding window approach. In this paper
we propose a candidate generation method and we introduce feature descriptors for grayscale images that are
tailored to the current task. The features are designed to be invariant to certain types of illumination changes
and are called normalized pair differences because of the formula involved in their calculation. Experimental
results validate our approach on extensive real world data.

1 INTRODUCTION

Automated Guided Vehicles perform (AGVs) logis-
tics operations without human intervention. This re-
quires the existence of a sensor capable of estimating
the position of the pallet that needs to be loaded by the
machine. This work focuses on developing a machine
vision-based detection system for pallets.

Pallets are wooden supports designed to hold
goods and are easily graspable by the forklift because
of its pockets. Pallets are standardized and for our
purposes they are handled from only one side. We de-
sire a flexible detection module that can identify the
relative position of the pallet from any image under
various lighting conditions.

Stereo cameras offer a good solution for 3D sens-
ing applications. The cost of such systems is lower
compared to laser scanners. Also camera systems of-
fer a full 3D view as opposed to 2D scan lines and the
possibility of high level reasoning on data. The main
drawback of such systems is the difficulty of working
in poor and rapidly changing illumination conditions.

We have studied previous vision-based attempts at
this problem and found that they are lacking because
of the following reasons: they rely on features that
do not possess good invariance properties; detection
performance is poor in general and especially in dark
regions; most systems are not thoroughly evaluated.

For the above mentioned reasons we propose im-
provements which constitute the main contributions
of this work:

• Original candidate generation method that enables
fast detection by quickly rejecting certain regions;

• The proposal of new grayscale features invariant
to certain types of illumination changes.

The paper is organized as follows: Section 2
presents existing approaches and important contribu-
tions from the image processing literature: edge de-
tection; feature vector extraction; classification. In
Section 3 we describe our proposed system and give
details about each processing step. Section 4 shows
experimental results that validate our system. Section
5 concludes the paper.

2 RELATED WORK

2.1 Sensor types

The specific topic of load handling is not a well-
researched area. Approaches for autonomous load
handling use different types of sensors to obtain an
understanding about the environment. In (Weichert
et al., 2013) the authors discuss the advantages of sev-
eral sensors for this task. We will group these ap-
proaches into two main categories based on the sen-
sors used: range sensors and vision-based sensors
(monocular or stereo cameras). In the following we
describe relevant approaches from each category.

Some available systems rely on laser scanner data.
In most cases the sensor provides data along a 2D
scanline. Using laser has the advantage over cameras
that it is able to operate in complete darkness and it is
not affected by lighting conditions.

In (Walter et al., 2010) a detection system is pre-

sented for the autonomous manipulation of a robotic
lift truck. The authors use closest edge detection ap-
plied on the sensor point cloud. SICK industries man-
ufacture laser scanners for multiple purposes. A work
from (Bostelman et al., 2006) presents a pallet detec-
tion method using such sensors. A solution is pro-
vided for unloading operations inside trucks. The
walls of the trucks are detected by applying a Hough
transform (Hough, 1962), (Duda and Hart, 1972).
The paper (Katsoulas and Kosmopoulos, 2001) uses
laser sensors to detect the positions of boxes of stan-
dard dimensions. Kinect sensors can be employed for
distance estimation as in (Oh et al., 2013). However,
they are not suitable for an industrial environment and
they offer a small field of view.

A hybrid approach from (Baglivo et al., 2011)
combines two types sensors: a laser scanner and a
camera. A fusion is performed at object level between
the detection from the color image and the points from
the laser. Edge template matching with distance trans-
form is applied on the color image. Both sensors must
agree on the detection, ensuring robustness. The sys-
tem requires the calibration of the two sensors. The
authors have evaluated their system on 300 examples
with results indicating a good localization precision.
They have found difficulties due to lighting conditions
in 5 cases.

Vision-based approaches employ multiple cues: in
(Kim et al., 2001) line-based model matching is used;
(Pages et al., 2011) performs colour-based segmenta-
tion; (Seelinger and Yoder, 2006) uses easily identifi-
able features (landmarks, fiducials); (Cucchiara et al.,
2000) employ corner features, region growing and de-
cision tree; in (Byun and Kim, 2008) least squares
model fitting is applied. Most authors perform eval-
uation on a small dataset or in laboratory conditions.
The work (Seelinger and Yoder, 2006) presents results
on 100 operations with a success rate of 98%. Also,
their approach requires the installation of landmarks
on each pallet.

A paper from (Varga and Nedevschi, 2014)
presents a detection approach relying on integral
channel features. The authors evaluate their system
on an impressive dataset containing 8000 test images.
Other approaches include: (Nygårds et al., 2000),
(Prasse et al., 2011), (Pradalier et al., 2008).

2.2 Detection approaches

Sliding window object detection is one of the most
commonly used approaches employed in the techni-
cal literature. Typical examples of particular detec-
tors include face detectors (Viola and Jones, 2001),
(Yang et al., 2002), pedestrian detectors (Dollár et al.,

2012), (Benenson et al., 2014), (Dollár et al., 2014).
The success of this general approach can be attributed
to the fact that it uses a powerful classifier to discern
between background and target object. Since the clas-
sifier is a cascade it eliminates zones without objects
quickly.

Features for detection should capture structure,
texture and color if possible. Some of the more im-
portant features that are relevant for this work are: any
edge feature defined on the image gradient (Mikola-
jczyk et al., 2003); Histogram of Oriented Gradients
(Dalal and Triggs, 2005) - developed originally for
pedestrian detection; Haar features (Viola and Jones,
2001); integral channel features (Dollar et al., 2009);
CENSUS features (Zabih and Woodfill, 1994); Lo-
cal Binary Patterns and their histograms (Ojala et al.,
1994), (Ojala et al., 1996).

Fast and accurate detection is possible with
boosted classifiers (Schapire, 1990) and soft cascades
(Bourdev and Brandt, 2005). This was first proposed
by Viola & Jones for face detection in (Viola et al.,
2005) but since has been adopted to pedestrian detec-
tion (Dollár et al., 2010). Many top performing meth-
ods on benchmarks utilize such classifiers for their
speed.

3 Proposed approach

Our proposed solution relies on exploiting two
main sources of visual information: intensity images
and stereo cameras. The intensity image provides in-
formation about 2D localization of the pallets. The
stereo cameras are used to obtain the 3D position and
orientation of the pallet relative to the cameras. We
have found 3D-based detection less reliable because
of poor reconstruction quality at pallet pockets.

Although our pallet detector is an application of
the standard sliding window technique our system has
to generate bounding boxes that are tight and pre-
cise. The requirements regarding exact localization
are strict. Pallets need to be localized with a preci-
sion of 1 cm. This explains why experimenting and
developing specific features are required. Also, the
detection method should be highly accurate.

In the following we first present the processing
steps required for detection. Stereo reconstruction is
described at a glance. Next, we provide details about
the candidate generation module. Afterwards, we in-
troduce descriptive features proposed specifically for
pallet detection. We have proposed several validation
steps at the post processing stage for more robustness
and enhanced localization.

3.1 Stereo reconstruction

Reconstruction is performed with semi-global match-
ing and CENSUS local descriptors. Our system
makes use of the rSGM implementation (Span-
genberg et al., 2014). CENSUS/LBP descriptors
have been found to be a reliable local descrip-
tor for many practical applications including those
from the automotive industry. Semi-global match-
ing (Hirschmuller, 2005) offers the advantage of hav-
ing smooth disparity maps and it is fast enough for
our purposes. The rSGM implementation is fast and
runs on CPU. It includes optimizations with SSE in-
structions and it is a top performing method on stereo
benchmarks.

3.2 Edge and line detection

For improving edge detection quality we rely on ex-
tracting normalized gradient values. This has been
proposed and employed in calculating HOG (Dalal
and Triggs, 2005) features and also in modern pedes-
trian detection algorithms (Dollár et al., 2010). Nor-
malized gradient values are obtained by box-filtering
the gradient magnitude and dividing the original gra-
dient magnitude and other channels by the filtered val-
ues. This ensures successful edge detection even in
dark regions.

In the following we provide the exact steps for cal-
culating the normalized gradient maps. The gradient
components along the x and y axes are obtained in a
standard way by convolution with Sobel filters:

Gx = I ∗Sx (1)

Gy = I ∗Sy (2)

The gradient magnitude is defined as the L1 norm
of the two components:

M = |Gx|+ |Gy| (3)

The box filtered magnitude will act as a normal-
ization factor:

M̂ = M ∗B (4)

where B is a square box-filter of dimension w x w.
Typical values for w are odd numbers from the inter-
val [5,25]. It is important to note that this filtering can
be performed in O(1) time per pixel for any filter size
w. Filtering with a Gaussian would increase the com-
putation with no significant benefit. The normalized
magnitude and the normalized gradient components
are obtained by dividing the original values with the
box filtered gradient magnitude (pixel by pixel):

M = M/(M̂+ ε) (5)

Gx = λ ·Gx/(M̂+ ε) (6)
Gy = λ ·Gy/(M̂+ ε) (7)

All division and summation operations in the pre-
vious definitions are carried out element by element.
The small constant ε = 5e−3 avoids division by zero.
The multiplier λ is required for converting the nor-
malized values into the [0,255] interval.

Intuitively this operation produces strong re-
sponses where the relative change in intensity is
large compared to the average intensity change in the
neighboring region. This improves edge detection in
poorly illuminated regions.

3.3 Candidate generation

Considering all possible positions for sliding window
detection results in a large number of possible can-
didates (see experimental results sections for typical
numbers). It is not feasible to classify each possible
candidate to see whether or not it is a pallet. This is
why it is important to have a good candidate genera-
tion module. The main characteristics should be:

• high coverage - the module should not miss any
real pallet positions (i.e. low number false nega-
tives, high recall);

• fast to evaluate - can be executed instantly in com-
parison to following modules;

• high rejection rate - it should accept only a lim-
ited number of candidates to speed up, help and
validate further processing steps.

Currently we are working with two main ap-
proaches for candidate generation. These improve the
baseline approach which is just to take every possible
rectangle at valid positions and scales. Edge-based
candidate generation relies on edge detection while
the other alternative uses stereo information. We pro-
vide details in the following.

3.3.1 Edge-based candidate generation

Since the frontal view of pallets is a rectangle the can-
didate generator should produce a list of candidate
rectangles. For this we first employ the normalized
gradient in the y direction as in eq. 7 to detect im-
portant horizontal lines called horizontal guide lines.
A histogram that accumulates gradient values along
each line is used to find local maxima. In other words
we perform a projection along the horizontal direc-
tion. Since the structure of the image usually contains
strong horizontal lines this step is robust and we can
rely on the extracted guidelines later on.

Vertical lines are detected only between guideline
pairs that respect the dimension constraints. These

Figure 1: Stereo-based candidate generation; top-left - dis-
parity histogram; top-right - original image with reduced
region of interest marked; bottom-left - v-disparity map;
bottom-right - disparity map with only the neighborhood of
principal disparity highlighted, also the projections along
the two axis are visualized and the new boundaries detected

lines are detected where the sum of gradient along x
direction exceeds a certain percentage (10 %). The
resulting candidate rectangles arise from combining
vertical edges that fit the dimension constraints re-
garding width, height and aspect ratio.

3.3.2 Disparity-based candidate generation

We can limit the region of interest for processing by
considering only the objects with fronto-parallel sur-
faces. The reason for this is that the axis of the stereo
system is roughly perpendicular to the target pallets.
Such objects appear as a line in the v-disparity and
u-disparity map. Also, they lie on the disparity plane
with high appearance frequency. We define the prin-
cipal disparity as the disparity value that corresponds
to the highest local maximum from the disparity his-
togram. The highest local maximum is considered be-
cause this corresponds to the obstacle in front of the
camera. We call principal disparity plane the plane
obtained by selecting only points that are close to the
principal disparity. This is equivalent to highlighting
only the objects that are closest from the visual scene.

Once the principal disparity value is determined
the region of interest can be limited to the zone where
such disparity values are frequent. We do this by start-
ing from the extremities (left, right and bottom) and
shrink the boundary of the original region of interest
until the frequency of the preponderant disparity ex-
ceeds a limit (see Figure 1). Principal disparity also
gives us information about the approximate and ex-
pected dimensions of the pallets in the image plane.
This also reduces the number of possible candidates.
We apply normal edge-based candidate generation on
the reduced region of interest and apply the new con-
straints found regarding the size of the pallet.

3.4 Feature extraction

The principal characteristic features of pallets are
their structure. It is therefore important to have fea-
tures that capture the structure of the pallet. Previous
work used integral features defined on manual rect-
angular subregions, edge features, Hough transform
and corner features. We have experimented with other
features for two reasons: to capture the structure of
the pallet in a concise way and to ensure a representa-
tion that is more invariant to illumination changes.

3.4.1 Proposed grayscale features - normalized
pair differences

Our goal was to introduce a grayscale feature that is
sufficiently descriptive and also invariant to illumina-
tion changes. A simple way to model illumination
change is multiplication by a constant value. Techni-
cally, this represents a gain change, but it is a good
approximation. The features should be unaffected by
this kind of operation. Weber’s law states that ”just-
noticeable difference between two stimuli is propor-
tional to the magnitude of the stimuli” (Ross and
Murray, 1996). Features therefore should be defined
as ratios to capture relative change. This idea was
employed before in other descriptors such as WLD
(Chen et al., 2010), however here we propose a dif-
ferent form.

We use this principal to calculate our features. An
option would be to normalize features by dividing
with the mean of the surrounding region. However,
we do not want the surrounding region to affect the
descriptor of the pallet. Instead we want and invariant
representation that will be the same for the same pal-
let. This observation leads to the necessity of defin-
ing features using only the intensity values inside the
bounding box.

First, the bounding box is resized to a fixed size
(5 x 20). This reduces the pallet to a smaller num-
ber of intensity values and also amounts to a low pass
filtering. It is necessary to remove the regions cor-
responding to pallet pockets. These regions are not
part of the object and bear no relevance to the detec-
tion task. Second, we take each possible pair of inten-
sity values. The sample intensity values are denoted
fi and are obtained from the previous downsampling
operation. See Figure 2 for illustration of the defined
concepts.

We denote these features as normalized pair dif-
ferences (npd). Feature values are calculated by con-
sidering all pairs, taking the difference and divid-
ing by the first value from each pair. A sigmoid-
type function is applied afterwards. Intensity features
where the mask is 0 are not used:

Figure 2: Feature grid of 3 x 16 overlaid on a pallet. After
resizing each square cell will become one single intensity
value. The cells from the red region are not used (mask = 0)

Dk = tan−1
(

fi− f j

fi + ε

)
(8)

The role of the inverse tangent function is to limit
the range of the features, i.e. it is used as a sigmoid-
type function. All possible pairs taken from valid
positions form a signature that describes the pallet.
Adding a small number ε = 1e−2 to the denominator
avoids checking for zero division and simplifies the
code for the algorithm. It is easy to see that if all in-
tensity values are uniformly multiplied with a value
α, signifying a change in illumination, the value of
the descriptor does not change.

This signature will be compared by the classifier at
detection time. The signature should remain roughly
the same even after illumination changes. We use a
rectangle grid of dimension 5 x 20. The dimension
of this type of feature vector is 1350 (some pairs are
missing from the

(100
2

)
= 4950 because we exclude

the zones from the pockets).

3.4.2 Edge features

We also define edge features on rectangular areas near
the pallet boundary in order to help in precise local-
ization. The edge features are calculated on the nor-
malized gradient channel. The descriptors are defined
in equation 9 as normalized sums of the normalized
gradient values calculated on rectangular areas de-
picted in Figure 3. The upper edges of the pockets are
not used since they can be covered by plastic hanging
from the palletized goods. The dimension of this type
of feature vector is 9.

Figure 3: Support regions for calculating normalized gradi-
ent sums

Ek =
1

area(Rk)
∑

(x,y)∈Rk

M(x,y) (9)

3.4.3 LBP histogram

For texture features we use a histogram of local binary
patterns. This has shown to be a reliable texture de-
scriptor and it is also employed in many stereo match-
ing systems. LBP descriptors also possess good illu-
mination invariant properties since only the relative
order of intensity values are important. The dimen-
sion of this type of feature vector is 256.

Hk =
1

area(R) ∑
(x,y)∈R

[mask(x,y) = 1][lbp(x,y) = k]

(10)
The last definition uses the standard Iverson

bracket notation: [expr] is 1 if the logical expression
expr is true and 0 otherwise. The histogram is sim-
ply the count of each type of LBP feature that is in a
valid position. The counts are normalized appropri-
ately with the area of the bounding box R(see Figure
3). The area refers to only the zone from the rectangle
that is not invalidated by the mask.

3.5 Classification and detection

Boosted decision trees offer both high classification
accuracy and fast prediction time. Since predic-
tion is made by comparing individual features against
threshold the time taken does not depend on the di-
mension of the feature vector. Since we know before-
hand the number of desired pallets we can keep only
the pallets with the highest confidence values.

The classifier is trained using the positive exam-
ples available from the manual annotations. Negative
samples are generated automatically from each train-
ing image from regions that surely do not contain any
pallets. Retraining the classifier with hard negatives
has proven not to be helpful.

3.6 Refinement and validation

We have found it best to enable the detector to re-
turn matches that are not precisely localized and then
refine their position and scale. Bounding boxes that
have good aspect ratio will have their scores improved
by a multiplicative factor of 2. In cases where 2 pal-
lets are required to be detected we boost the scores of
each candidate pair that lies on the same y position
and have approximately the same size.

The standard non-maximum suppression that is
applied to every overlapping bounding box pair is

slightly modified. In case of an overlap only the can-
didate with the higher score is retained. Two bound-
ing boxes are considered to overlap if the overlap
along the x axis is larger than 10 % and if the over-
lap along the y axis is larger than 0. A small overlap
between detected bounding boxes along the x axis is
possible when the pallets are far away and close to
each other.

Since we have knowledge about the number of
pallets that are required to be detected we can return
only the most confident detections. Final pallet posi-
tion is reconstructed from the plane fitted on the rect-
angular bounding box that is detected. This also pro-
vides us the orientation of the object.

4 Experimental results

All processing steps have been implemented in
C++. The project uses OpenCV library for low-level
image processing functions such as the bilateral filter,
box filter, image reading/writing.

4.1 Feature properties

We run tests to evaluate the invariance properties of
the features we use. A sequence containing 317 mea-
surements is recorded of a static pallet with varying
exposure time. The change in exposure time modi-
fies the appearance of the pallet from barely visible
to saturated white. Descriptors are extracted from the
same region. We evaluate the mean and the maximum
of the standard deviations of each component. Also,
the Euclidean distance is calculated between each de-
scriptor pair and the mean and the maximum is found.
We divide by the feature dimension for a fair compar-
ison. All feature values are normalized to be in the
range [-1, 1]. Table 1 shows the results, entries are or-
dered from top to bottom from least invariant to most
invariant (we show only values for differences). The
npd features have similar properties as the lbp his-
togram but they are more descriptive and structure in-
formation is maintained. These features change less
under the tested conditions compared to the intensity
and edge features.

Feature dim. mean diff. max diff.
intensity 53 3.78e-02 1.09e-01

edge 53 2.44e-02 4.23e-02
npd 1327 2.74e-03 6.11e-03
lbp 256 2.93e-04 8.43e-04

Table 1: Measuring exposure invariance properties of dif-
ferent descriptor types

4.2 Pallet detection accuracy

For evaluation purposes we use the same dataset and
the same criteria as the work from (Varga and Nede-
vschi, 2014). The dataset was acquired from a real
warehouse and was manually labeled. The detector
is trained on a subset of the whole dataset. This part
does not overlap with the test set on which we per-
form all evaluation. Two test sets are available: test
set 1 which is somewhat similar to the training set
having been acquired in the same recording session,
also this contains the most annotated pallets; and test
set 2 originating from a separate recording session.
The second test set is more challenging and contains
mostly difficult cases. The composition of the sets is
as follows: training set contains 467 images and 891
labeled pallets (there can be zero or more than one
pallet in each image); test set 1 contains 7122 images
and 9047 labeled pallets; test set 2 contains 224 im-
ages and 356 labeled pallets. The final model installed
in the system on the AGV was trained on all the avail-
able data.

The values of some of the parameters are given
in the following. Region of interest dimensions: 400
x 1440; Bilateral filter sigma in the coordinate space
σx = 5; Gradient box filter dimension w = 15; Gra-
dient multiplier λ = 40; Horizontal edge detection
non-maximum suppression neighborhood size h = 3;
Vertical edge detection non-maximum suppression
neighborhood size v = 3.

Since all scores depend on determining whether
or not two rectangles overlap sufficiently we state pre-
cisely what we consider as an overlap. Usually for ob-
ject detection intersection over union (PASCAL VOC
criteria) is used to determine overlap. Here, we de-
fine the absolute positioning error along the x axis Ex
as the difference between the union and overlap of
the intervals along the x axis of the two rectangles.
Ey, The absolute positioning error along the y axis is
defined analogously. We consider an overlap a pre-
cise match if Ex ≤ 15 and Ey ≤ 15; and a normal
match if Ex ≤ 50 and Ey ≤ 50. Our overlap measures
are more strict than the relative overlap of the pascal
VOC measure because of the system requirements. Ex
is approximately equals twice the positioning error in
pixels. A precise position amounts to an error of 7.5
pixels ≈ 1.5 cm using our hardware setup.

Candidate generation algorithms are evaluated by
checking if every bounding box defined in the ground
truth is provided by the module. The percentage of
recalled bounding boxes is defined as the coverage.
A box is recalled if it overlaps sufficiently with the
ground-truth box. We have considered an absolute
overlap when the absolute positioning error is less

than 15 px along both axis. The results with different
methods on the training dataset is presented in Table
2. Even though we do not achieve full coverage, rect-
angles near the ground truth are obtained. Using post
processing and corrections the localization precision
of the detection can be improved.

Method Coverage Avg. nr.
candidates

All(5,5) 100 % 1370k
Grid(7,7) 99.40 % 508k
Edge(5,3) 99.52 % 374k
Normalized gradient
(3,3,15)

98.81 % 35k

Table 2: Comparison of different candidate generation
schemes. The approach from the last row offers an accept-
able coverage while drastically reducing the number of can-
didates generated per image. The numbers in the parenthe-
ses indicate the step size in horizontal and vertical direction
and the filter size (where applicable).

We now turn to evaluating pallet detection accu-
racy. Table 3 shows the detection accuracy on the two
test sets using different configurations. The effect of
adding new feature types is evaluated. We present test
results using a boosted classifier with 100 and 1000
weak learners respectively. The number of negatives
signifies per image is set in accordance with the power
of the classifier. The training set can contain more
than 1 million examples. If we weigh the error on pos-
itive instances more by ω times we can obtain a more
precise localization. The npd-linear feature performs
worse on the harder test set 2. Clear improvements
can be seen with the new features and each additional
feature improves the detection accuracy. Missed de-
tections arise when the images are too dark, when the
pallets are not fully visible or when false detections
appear due to glare from the plastic covering the pal-
letized goods.

The typical running times for the processing mod-
ules are: rectification and disparity map generation
60 ms; candidate generation 20 ms; feature extraction
800 ms; classification 300 ms. All these operations
are performed on the region of interest of size 400 x
1440 = 0.576 Mpixels. Training the classifier with ap-
proximately 1 million examples and the feature vector
of dimension 1591 takes a couple of hours.

5 CONCLUSIONS

The purpose of this work was to present a pallet detec-
tion method. We have improved on existing results by
designing and implementing a better candidate gener-

test set 1 test set 2
Features normal precise normal precise

100 weak learners + 100 negatives/image
integral ftrs. 79.0 64.2 - -
npd 80.6 65.1 80.9 40.1
npd+edge+lbp 97.1 90.2 87.7 46.0
npd+edge+lbp
+ ω = 10

97.7 92.6 87.7 70.5

1000 weak learners + 1000 negatives/image
integral ftrs. 92.0 75.4 77.0 38.0
npd+edge+lbp 100 94.9 93.5 65.7
npd+edge+lbp
+ ω = 2

98.9 95.4 91.9 68.8

Table 3: Detection accuracy in percentages for multiple
model configurations; evaluation on both test sets; nor-
mal localization and precise localization is considered. For
comparison we include the integral features from (Varga
and Nedevschi, 2014) (code is provided by the authors).

ation module and providing better features. Detection
accuracy was evaluated on a large test set and com-
pared to an existing approach. Our system performed
much better in every category.

We have learned that normalized gradient values
enable a more robust edge detection and permit us to
generate a small set of candidates. More descriptive
features result in higher detection accuracy.

Future work will involve optimizing the execution
time of the feature extraction module because it cur-
rently dominates the pipeline. Increasing the local-
ization precision with post-processing steps is also of
interest.

ACKNOWLEDGEMENTS

PAN-Robots is funded by the European Commission
under the 7th Framework Programme Grant Agree-
ment no. 314193. The partners of the consortium
thank the European Commission for supporting the
work of this project. We would like to thank our
project and Elettric80 for the opportunity to perform
tests at the warehouse in Viano, Italy.

REFERENCES

Baglivo, L., Biasi, N., Biral, F., Bellomo, N., Bertolazzi, E.,
Lio, M. D., and Cecco, M. D. (2011). Autonomous
pallet localization and picking for industrial forklifts:
a robust range and look method. Measurement Science
and Technology, 22(8):085502.

Benenson, R., Omran, M., Hosang, J., and Schiele, B.

(2014). Ten years of pedestrian detection, what have
we learned? In ECCV-CVRSUAD. IEEE.

Bostelman, R., Hong, T., and Chang, T. (2006). Visualiza-
tion of pallets. In SPIE Optics East.

Bourdev, L. and Brandt, J. (2005). Robust object detection
via soft cascade. In CVPR, pages II: 236–243.

Byun, S. and Kim, M. (2008). Real-time positioning and
orienting of pallets based on monocular vision. In IC-
TAI (2), pages 505–508. IEEE Computer Society.

Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen,
X., and Gao, W. (2010). Wld: A robust local image
descriptor. IEEE Trans. Pattern Anal. Mach. Intell,
32(9):1705–1720.

Cucchiara, R., Piccardi, M., and Prati, A. (2000). Focus
based feature extraction for pallets recognition. In
BMVC.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In CVPR, pages I: 886–
893.

Dollár, P., Appel, R., Belongie, S., and Perona, P. (2014).
Fast feature pyramids for object detection. PAMI.

Dollár, P., Belongie, S., and Perona, P. (2010). The fastest
pedestrian detector in the west. In BMVC, pages 1–11.
British Machine Vision Association.

Dollar, P., Tu, Z. W., Perona, P., and Belongie, S. (2009).
Integral channel features. In BMVC.

Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012).
Pedestrian detection: An evaluation of the state of
the art. IEEE Trans. Pattern Anal. Mach. Intell,
34(4):743–761.

Duda, R. and Hart, P. E. (1972). Use of the hough transfor-
mation to detect lines and curves in pictures. CACM,
15:11–15.

Hirschmuller, H. (2005). Accurate and efficient stereo pro-
cessing by semi-global matching and mutual informa-
tion. In CVPR, pages II: 807–814.

Hough, P. V. C. (1962). A method and means for recogniz-
ing complex patterns. U.S. Patent No. 3,069,654.

Katsoulas, D. and Kosmopoulos, D. I. (2001). An efficient
depalletizing system based on 2d range imagery. In
IEEE International Conference on Robotics and Au-
tomation, 2001. Proceedings 2001 ICRA., volume 1,
pages 305–312. IEEE.

Kim, W., Helmick, D., and Kelly, A. (2001). Model based
object pose refinement for terrestrial and space auton-
omy. In International Symposium on Artificial Intelli-
gence, Robotics, and Automation in Space, Montreal,
Quebec, Canada.

Mikolajczyk, K., Zisserman, A., and Schmid, C. (2003).
Shape recognition with edge-based features. In
BMVC.

Nygårds, J., Högström, T., and Wernersson, Å. (2000).
Docking to pallets with feedback from a sheet-of-light
range camera. In IROS, pages 1853–1859. IEEE.

Oh, J.-Y., Choi, H.-S., Jung, S.-H., Kim, H.-S., and Shin,
H.-Y. (2013). An experimental study of pallet recogni-
tion system using kinect camera. In Advanced Science
and Technology Letters Vol.42 (Mobile and Wireless
2013), pages 167–170.

Ojala, T., Pietikainen, M., and Harwood, D. (1994). Perfor-
mance evaluation of texture measures with classifica-
tion based on kullback discrimination of distributions.
In ICPR, pages A:582–585.

Ojala, T., Pietikainen, M., and Harwood, D. (1996). A com-
parative study of texture measures with classification
based on feature distributions. Pattern Recognition,
29(1):51–59.

Pages, J., Armangue, X., Salvi, J., Freixenet, J., and Marti,
J. (2011). Computer vision system for autonomous
forklift vehicles in industrial environments. The 9th.
Mediterranean Conference on Control and Automa-
tion.

Pradalier, C., Tews, A., and Roberts, J. M. (2008). Vision-
based operations of a large industrial vehicle: Au-
tonomous hot metal carrier. J. Field Robotics, 25(4-
5):243–267.

Prasse, C., Skibinski, S., Weichert, F., Stenzel, J., Müller,
H., and Hompel, M. T. (2011). Concept of automated
load detection for de-palletizing using depth images
and RFID data. International Conference on Con-
trol System, Computing and Engineering (ICCSCE),
pages 249–254.

Ross, H. and Murray, D. J. (1996). E.H.Weber on the tac-
tile senses 2nd ed. Hove: Erlbaum (UK) Taylor and
Francis.

Schapire, R. (1990). The strength of weak learnability.
MACHLEARN: Machine Learning, 5.

Seelinger, M. J. and Yoder, J.-D. (2006). Automatic visual
guidance of a forklift engaging a pallet. Robotics and
Autonomous Systems, 54(12):1026–1038.

Spangenberg, R., Langner, T., Adfeldt, S., and Rojas, R.
(2014). Large scale semi-global matching on the CPU.
In Intelligent Vehicles Symposium, pages 195–201.
IEEE.

Varga, R. and Nedevschi, S. (2014). Vision-based auto-
matic load handling for automated guided vehicles. In
Intelligent Computer Communication and Processing,
pages 239–245. IEEE.

Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. Proc. CVPR,
1:511–518.

Viola, P. A., Platt, J. C., and Zhang, C. (2005). Multiple
instance boosting for object detection. In NIPS.

Walter, M. R., Karaman, S., Frazzoli, E., and Teller, S. J.
(2010). Closed-loop pallet manipulation in unstruc-
tured environments. In IROS, pages 5119–5126.
IEEE.

Weichert, F., Skibinski, S., Stenzel, J., Prasse, C., Kama-
gaew, A., Rudak, B., and ten Hompel, M. (2013). Au-
tomated detection of euro pallet loads by interpreting
PMD camera depth images. Logistics Research, 6(2-
3):99–118.

Yang, M.-H., Kriegman, D. J., and Ahuja, N. (2002). De-
tecting faces in images: A survey. IEEE Trans. Pattern
Anal. Mach. Intell, 24(1):34–58.

Zabih, R. and Woodfill, J. (1994). Non-parametric local
transforms for computing visual correspondence. In
ECCV, pages B:151–158.

Real-time Pedestrian Detection in Urban Scenarios

VARGA Robert, VESA Andreea Valeria, JEONG Pangyu, NEDEVSCHI Sergiu
Technical University of Cluj Napoca

{robert.varga, pangyu.jeong, sergiu.nedevschi}@cs.utcluj.ro, andreeavaleriavesa@gmail.com
Telephone: (800) 555–1212

Abstract—A real-time pedestrian detection system is presented
that runs at 24 fps on standard VGA resolution input images
(640x480px) using only CPU processing. The detection algorithm
uses a variable sized sliding window and intelligent simplifications
such as a sparse scale space and fast candidate selection to obtain
the desired speed. Details are provided about the initial version
of the system ported on a mobile device. We also present a
new labeled pedestrian dataset that was captured from a moving
car that is suitable for training and testing pedestrian detection
methods in urban scenarios.

Keywords—Pedestrian detection; object recognition; region of
interest selection; mobile devices

I. INTRODUCTION

As we move closer and closer to a fully autonomous
car with collision detection, lane departure warning, adaptive
cruise control, autonomous emergency braking, pedestrian
detection seems to be the next big wave in offering advanced
modern car safety features. Early detection could help reduce
the number of accidents by heightening the awareness of the
driver in time. In recent years there has been a dramatic
increase in the number of people using a smartphone or a
tablet as part of their everyday life, confirming the demand
for having a fast and accurate detection system integrated with
mobile devices. With such an increase and a technology that
is constantly evolving, bringing faster and faster processors on
the market, the challenge for building a pedestrian detection
system on a mobile device proves to be a very good subject
open for research. Even though well-established methods run-
ning on CPU and specialized hardware exist there is still a long
way from fast and accurate detection on portable devices.

II. RELATED WORK

This section provides references to important contributions
for pedestrian detection. For a comprehensive review on the
subject the reader is advised to consult reviews and surveys
such as [1], [2], [3].

It is essential for pedestrian detectors to rely on features
that help discriminate objects from the background. Histogram
of Oriented Gradients[4] is a well established feature for pedes-
trian detection. Other relevant features are: dense SIFT[5], [6],
Histogram of Flow[7], Color self similarity[8], Co-occurrence
Histogram of Oriented Gradients[9], Shapelet [10], Local Bi-
nary Patterns [11]. Optimizing calculation with integral images
has enabled fast calculation of HOG and similar features [12],
[13], [14]. Contour based features can also provide useful
information [15], [16]. Another crucial ingredient is a fast
classifier. In this field boosted ensemble classifiers [17], [18],
[19], [20], [21], [22] dominate along with fast SVMs such as
linear SVM or Histogram Intersection Kernel SVM [23].

Most top performing modern detection methods rely on
integral features and perform detection using sliding windows
[1], [20], [24], [25]. Lightning fast methods do exist but
they rely on either specialized hardware (GPU[26], [27], [22]
or FPGA [28]) or on stereo information (depth) [21], [29].
Another alternative would be a part-based detector [30].

Most of the implementations using ARM architecture are
targeted at the embedded market. A couple of such embedded
systems for automotive applications that posses an integrated
pedestrian detection capability are: Mobileye Pedestrian Col-
lision Warning (PCW) system, Toyota Pedestrian-Avoidance
Steer Assist or Volvos Pedestrian Detection With Full Auto
Brake system. However, there is no extensive work so far
regarding a standalone Android application capable of per-
forming real time pedestrian detection. Our aim is to offer
a starting point in building such a solution.

III. PROPOSED APPROACH

The detection algorithm for the current system follows
our previous work from [31]. Here, we only provide a short
overview and state the differences. The main focus of this
paper is to show how to achieve high-speed detection while
maintaining detection performance as much as possible.

One of the key ideas is to detect pedestrians with only a
reduced number of heights. Usually detecting different heights
entails resizing the image multiple times (constructing the
image pyramid). This means that the number of scales is
in one-to-one correspondence to the number of pedestrian
heights. Our approach is opposed to the mainstream idea of
using a dense scale space for image pyramid construction. Each
image from the image pyramid is a rescaled version of the
input image and has and associated detector of a given height.
Typical detectors construct an image pyramid with up to 50-
55 scales. The heights chosen here are based on statistical
data acquired from the training dataset. We apply k-means
clustering to obtain the 6 representative cluster centers for
pedestrian bounding box heights. The number 6 was chosen
because the detection rate was acceptable. A future analysis
about how the detection performance is influenced by the
number of heights will be performed. The difference compared
to other sparse scale space methods (i.e. methods that limit the
number pedestrian heights to consider) is that we do not have
detection windows that are of the form a2n, instead we select
the representative centers based on the training data. Since
detection performance degrades significantly at lower scales
we may omit smaller window heights for practical applications.

The proposed detection method uses a sliding window
approach with the before mentioned 6 fixed window heights
and a constant aspect ratio. Considering an exhaustive search

at every position, scale and aspect ratio is not feasible and also
not necessary. In this work we opt for a candidate generation
that accepts only candidate rectangles that have their center in
the horizontal middle stripe. This selection can be motivated by
studying the spatial distribution of detection window centers
from the training dataset. This distribution has been observed
on other datasets such as the Caltech Pedestrians [1].

Each sliding window height corresponds to a pedestrian at
a specific scale and has an associated classifier. The classifiers
are trained separately for each scale. Our aim is to totally
eliminate image resizing and other operations on features. This
is a key difference compared to other methods: Dollar et al.
adjust the features based on scale in [20], while Benenson et
al. [21] adjust the classifier. The detection window is moved
to every valid position that is dictated by a region of interest
selection method. Features are then calculated as sums of
rectangular subregions for each candidate window and classifi-
cation is performed. The sums of different image channels over
a rectangular area can be calculated efficiently with integral
images. The underlying image channels are Luv color-space,
gradient magnitude and oriented gradient histogram with 6
bins. For feature extraction we rely on a module provided by
Dollar [32].

Key elements of this approach that help achieve high-speed
and reliable detection are:

• No image resizing

• Smart and fast region of interest selection (candidate
generation)

• Fast integral channel features calculation

• A cascade of boosted decision trees for classification

• Reduced number of pedestrian heights

• Custom implementation of all processing modules and
code parallelization

IV. IMPLEMENTATION DETAILS

The reduced execution time of the algorithm is due to the
fact that almost all processing steps have been specifically
rewritten for the detection task. Our implementation is in C++,
compiled with Visual Studio 2010 compiler with OpenMP
multithreading features enabled. Other settings include: fast
code optimization enabled, fast floating point model, omit
frame pointers. OpenCV 2.4.5 is the chosen library for image
processing functions.

The workstation used to test our system has the following
parameters: Intel Core i7 CPU, 3.5 GHz, 4 cores, 8 logical
processors, 16 GB RAM. Most of the relevant operations are
parallelized to use the processing power of the CPU efficiently.
Speed measurements are provided in the Experimental Results
section VI.

A. Detection algorithm

The detection algorithm follows the well established
pipeline format having the following steps: preprocessing
(resizing - not employed in this case, padding - when the
image width is not divisible by 4, smoothing), region of

interest selection (or candidate generation), feature channels
extraction (Luv conversion, gradient computation, histogram
bin aggregation), feature aggregation (rectangular region sums)
only on the candidate regions, classification/prediction and
non-maximum suppression.

An important aspect of the preprocessing step is how to
treat images that do not have width divisible by 4. Since
many operations run only if divisibility is ensured we pad
the images instead of cropping or resizing. This also helps
to linearize the image in the memory. Note, that during the
training phase many cropped small images are fed as input to
the feature extractor. These result from clipping out only the
pedestrian bounding box. This is why it is important to treat
irregular sized images carefully. We perform no image resizing,
although for larger input images this could be included to
reduce the search space. Image smoothing is moved to the
feature extraction phase and gaussian bluring is replaced by a
faster triangular filtering as in [13].

Region of interest selection provides the candidate rectan-
gles from which the features are extracted and classified. It is
essential to restrict the number of these candidates to reduce
the workload of the following modules from the pipeline. For
this step we have three main options. The first option is to use
all possible bounding boxes with a given stride, fixed aspect
ratio and height restricted to a set of values. The second option
is to admit only the rectangles whose centers lie in the central
horizontal stripe of the image. This is a heuristic that is easy
to implement and it is deduced from the measurements from
the pedestrian dataset (see section V). The third option is to
select candidate regions based on the edges in the image (as
in [31]). Here we opt for the second approach because it is
sufficient and assures high coverage. The selected pedestrian
heights are: 60, 92, 136, 212, 340 pixels. The stride is set to 4
or 8 pixels, the fixed aspect ratio is 0.43 (width over height).

For feature extraction we rely on the Integral Channel
Features module provided by Dollar [32]. This was adapted
from Matlab+mex to our C++ implementation that uses classes
from the OpenCV 2.4.5 library. Feature extraction is fast
because of clever usage of integral images, parallel computing
of the channels and SSE instructions. The present module has
the standard configuration of channels: luv, gradient magnitude
and 6 gradient orientation bins. Parameters have been set to:
5000 random features with an area of at least 25; shrinking
factor of 4, triangular smoothing which is equivalent to a
Gaussian blur with a sigma of 1. See [13] for more details
about the parameters.

Classification is performed with an ensemble of 5000 weak
learners. Both the training and predicting have been reim-
plemented to optimize prediction speed. Discrete boosting is
applied with two level decision trees. This option is motivated
by [20], where the authors show that the boosting method does
not have a large impact on the detection rate and that 2 level
decision trees are the best for this task. The splitting criterion
for the decision tree is the local training error, i.e. the best
split is the one that minimizes the training error. Rejection
thresholds for the cascade classifier are obtained via the direct
backward pruning method [33] on the training set. In most
cases it is preferred to obtain the thresholds on a validation
set rather than the training set. When this validation is not
performed the rejection thresholds should be lowered in order

to prevent the quick rejection of unseen positive examples.
A simple recalculation of the thresholds can be performed in
order to obtain rejection thresholds for any end threshold (see
[33]).

At detection time all rectangles obtaining a classification
score higher than a given threshold θ) are retained for non-
maximum suppression. For every two overlapping rectangles
we retain only the one with the higher score. The overlap can
be determined in multiple ways. Here, we use the formula:
omin = R1∩R2

min(R1,R2)
, where R1 and R2 are the areas of

the two rectangles, and the numerator contains the area of
their intersection. This eliminates smaller bounding boxes from
inside larger ones because in this case the overlap is high due
to the min function from the numerator. For the same reason
it more aggressive than the usual alternative: the PASCAL
VOC-type overlap measure o = R1∩R2

R1∪R2
. This is why lower

thresholds are suitable for this method. Another alternative
useful for large number of detection windows is to perform
a greedy elimination. The threshold for considering overlap is
set to 0.4.

B. Training procedure

At the training phase we repeat the same operations at
each scale to generate classifier models. We first process the
positive examples. Each bounding box of a person is cropped
from the original image and resized with bilinear interpolation
to the size of the current detection window (e.g. 60x26px).
Adjustments are mare to center to the bounding box and to
preserve the original aspect ratio (resizing factor is the same
along the width and the height). To increase the diversity
we also process the horizontally mirrored image. The 5000
features are calculated and saved for later with a positive label.
These features are randomly generated rectangles from inside
the detection window area. To obtain negative samples we
select 5000-7000 random crops from the list of images not
containing any pedestrians. A uniform sampling is performed,
i.e. if there are 5000 images, then one random rectangle is
chosen from each, if there are 20000 images (a typical case),
then one random rectangle is chosen from every 4th. For every
random window we calculate the features and save them for
later with a negative label. Once all examples are processed
the file containing the features can be fed as input to train the
classifier.

Next, we perform bootstrapping. Call the initial model as
model-x-0, where x stands for the height and 0 stands for no
bootstrapping. By applying the classifier on negative images
we obtain at first many false positives. At each stage we retain
7000 of these false positives and append their feature vectors
to the training file. After retraining the classifier model-x-1
is obtained. This process is repeated 2-3 times until there are
only a few false positives or no change is observed. Limiting
the number of examples is essential to keep the training set
balanced and also helps reduce redundancy. We have observed
that the classifier for the smallest scale produces false positives
even after 4 rounds of bootstrapping. This is a clear signal
indicating the failure of the classifier to learn a good model
from the training data.

TABLE I: Relevant parameters of the detection algorithm

Parameter Description Value
N number of weak learners 1000

M number of features 5000

d stride (grid step) 8

ρ aspect ratio 0.43

h pedestrian heights {60, 92, 136, 212, 340}
To overlap threshold for NMS 0.4

B additional bootstrap samples at each stage 7000

C. Implementation for Android mobile devices

In this section we present some details about how the
presented approach can be implemented on a mobile device
such as a tabled or smartphone. Having the algorithm al-
ready implemented in C++, developing an Android application
seemed a very good solution for us since we could easily
integrate the existing native code with Java code by making
use of Java Native Interface (JNI) framework. The algorithm
was ported on an Android mobile device having the following
characteristics: NVIDIA Tegra 3 T30L chipset, Quad-core 1.2
GHz ARM Cortex-A9 CPU, NEON instruction set support.
We have used JNI calls in order to capture the frames in
a Java environment and send them for a faster processing
in a native C++ environment. For a better performance we
have used OpenCV 2.4.5 for Tegra 3 library accelerated for
ARM NEON architectures and we took benefit from the
multi-core processor by parallelizing the code with Qualcomm
MARE Parallel Computing Library. We took advantage of
the pfor each functionality provided by MARE in order to
substitute the #pragma omp parallel functionality provided by
OpenMP used in our PC version. For handling the reading and
writing of the training files we have used the AssetManager
class provided by Java. This allows us to compress the files
and perform one time writing in the internal memory of the
portable device upon installation of the application and extract
the data whenever we need during running the algorithm.

V. CLUJ PEDESTRIANS DATASET

A labeled pedestrian dataset was gathered for the purpose
of training and evaluation (see Figure 3). This set was captured
using a smartphone placed on the windshield of a vehicle
driving through the city. The purpose of this new dataset is
to reproduce as closely as possible the real situation where the
detection method would be applied. The dataset is available in
both video (mp4) and image (png) format. Total video length is
around 15 minutes. The video framerate is of 30fps. All images
have 640x480px resolution (landscape). The total number of
images is 27666. The set is broken into independent sequences
based on separate recordings and contains mostly frames with
pedestrians. We provide the pedestrian bounding boxes for
each image in the dataset in a simple text file format. Note,
that some pedestrians are unlabeled. This is the case only for
very crowded scenes and for persons that are far away and thus
appear to be very small. There can be up to 10 pedestrians in
a single frame.

The pedestrian bounding boxes are divided into a non-
overlapping training set and test set. The initial training set

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
height distribution

height

pr
ob

ab
ili

ty

(a) height distribution

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
width distribution

width

pr
ob

ab
ili

ty

(b) width distribution

Fig. 1: Bounding box dimension statistics for the Cluj-
pedestrians dataset

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
aspect ratio distribution

aspect ratio

pr
ob

ab
ili

ty

(a) aspectratios

bbs center distribution, 99.7742% in the 200:300 stripe

x

y

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(b) width distribution

Fig. 2: Bounding box aspect ratio and center frequency for
Cluj Pedestrians

contains 3205 bounding boxes with pedestrians and 219 neg-
ative examples (images with no persons) obtained by labeling
every 10th frame. In order to enrich the dataset we have
interpolated the detections and have generated an interpolated
training set consisting of 27318 pedestrian rectangles. Due to
the reduced number of negative examples it is recommended
to augment the negative training set (images not containing
any pedestrians) from another source (e.g. INRIA, Caltech
or general images). For our training procedures we have
augmented the examples from this dataset with a portion of
the images (around 4500) from the Caltech Pedestrian Dataset
[34] that do not contain any pedestrians.

We provide some interesting and relevant statistics for the
dataset. The distribution of the heights of the bounding boxes
is given in Figure 1. Approximately 88% of the bounding
boxes are smaller then 140px in height, while the predominant
height is 90px. The width of the bounding boxes follows an
exponential distribution shown in Figure 1. The most likely
aspect ratio is 0.43, see Figure 2. An important statistic about
the frequency of the centers of the bounding boxes reveals that
only a negligible part (0.3%) of them are positioned outside
the 200-300 horizontal stripe (see Figure 2). Also, due to the
placement of the recording device and because the pavement
is on the right side, pedestrians occur more frequently on the
right side.

Fig. 3: Sample images from the Cluj Pedestrians dataset

Fig. 4: Sample detections from Cluj Pedestrians dataset

VI. EXPERIMENTAL RESULTS

To evaluate our detection method we perform tests on two
datasets: the well established INRIA benchmark and the newly
acquired Cluj Pedestrians dataset. We directly compare our
method to FPDW 1 [32] because it is based on it and also
the source code and the detection module is available. The
evaluation entails generating predictions with a low accepting
threshold and generating the DET curve (detection error trade-
off) by accepting detections at different thresholds. A predicted
bounding box is correct if it overlaps with a ground truth box
by at least 20%. The reason for the lower overlap threshold
is to take into consideration the possible scale differences.
The overlap is the usual Pascal VOC fraction: R1∩R2

R1∪R2
, where

the numerator is the intersection and the denominator is the
union of the two rectangles in question. A point on the
DET curve represents a fixed threshold for classification and
corresponds to a miss rate and a false positives per image. This
operation point can be chosen depending on the application
and its requirements. In order to directly compare methods the
area under the DET curve up to the one false positives per
image line is calculated. A lower area means better detection
performance.

First, we report on the results on the INRIA dataset. For this
dataset we select the following 6 bounding box heights: {124,
204, 288, 388, 516, 664}, which were estimated as cluster

1http://vision.ucsd.edu/∼pdollar/toolbox/doc/index.html

10
−2

10
−1

10
0

10
1

.10

.20

.30

.40

.50

.64

.80

1
INRIA − minimum overlap: 20% − all

false positives per image

m
is

s
ra

te

ours4: 0.162682
dollar4: 0.059659

Fig. 5: DET curve on the INRIA Pedestrian dataset

centers from the training data. The DET curve is presented in
Figure 5, where we compare our method with FPDW. Even
though the behavior for our algorithm is similar up the 0.1
fppi line the overall performance of the FPDW is better -
0.059 compared to 0.16 area under the DET curve. This can
be motivated by the fact that we use only a limited number of
scales to perform detections and other simplifications.

We also evaluate both methods on the Cluj Pedestrians
dataset (see Figure 4 for sample detections). For this dataset
we select the following 5 bounding box heights: {60, 92, 136,
212, 340}. Note that the pedestrian heights for the INRIA
dataset have larger values compared to those for the Cluj
Pedestrians dataset. This dataset is much harder because it
contains crowded scenes and small pedestrians. The bounding
boxes for FPDW were generated using the code provided by
the authors. The same evaluation code was used as in the case
of the INRIA dataset. The DET curve is presented in Figure 6.
In this case our method performs better at almost every point
of the DET curve and in overall - 0.35 in comparison with 0.43
area under the DET curve. This can be explained by a more
similar training set to the test set for our method. We have per-
formed a grid search for optimal parameters. The parameters
that can be changed after the classifier models are generated
are: the stride (spatial grid step size); the overlap threshold for
non-maximum suppression; the number of pedestrian heights
to consider. We provide some representative results in Table
II. Minimal areas under the DET curve are obtained at stride
4 and at overlap threshold of 0.4 (the criterion of overlap is
omin). The number of bootstrap rounds is set to 4, but for larger
scales the process converges at rounds 2-3 and the classifier
does not generate any false positives on the training set.

To evaluate the execution time of each part of the system
we measure at least 1000 times the speed of each module.
Table III summarizes the measurements that we have obtained.
The bottleneck of the pipeline is the feature extraction module
where heavy optimization has been performed, even so it is
the slowest part. A further reduction of the number of the can-
didates could help drastically improve the speed. The number
of candidates is around 2000-3000 depending on the scales.
The estimated execution time (disregarding the visualization
part) is 23.67 frames per second (around 42 milliseconds per
frame). We compare the speed gain with our previous version

10
−3

10
−2

10
−1

10
0

.40

.50

.64

.80

1
cluj pedestrians − minimum overlap 20% − all

false positives per image

m
is

s
ra

te

ours4: 0.353056
dollar4: 0.433560

Fig. 6: DET curve on the Cluj Pedestrians dataset

TABLE II: Area under the DET curve for different parameters
on the Cluj Pedestrians dataset

area stride = 8 stride = 4 stride = 3
overlap = 0.40 0.361 0.353 0.367

overlap = 0.65 0.373 0.367 0.375

overlap = 0.70 0.384 0.372 0.379

TABLE III: Execution time of different modules

Step PC [ms] Android [ms] Android + MARE [ms]
RoI selection 0.131 0.29 0.29

Feature Extraction 38.3 1491.29 739.53

Classification 3.38 230.60 78.73

NMS 0.096 0.13 0.13

from [31]: 180 milliseconds on an image with a resolution of
370x480px would result in approximately 311ms running time
on a 640x480px image, thus the speed gain is: 311

42 = 7.4. Time
measurements on Android for a 640x480px resolution indicate
a 1.21 FPS average frame rate (around 823 milliseconds per
frame). This is the parallelized Android version which has an
overall speed gain compared to the single threaded version of:
1781.89
823.0 = 2.16 (1491.29739.53 = 2.01 - feature extraction; 230.60

78.73 =
2.92 - classification).

VII. CONCLUSION

In this paper we have presented a real-time PC imple-
mentation of a pedestrian detection algorithm able to run on
Android mobile devices. The key idea is to use the sliding
window detection approach on a restricted zone of the image.
We employ only 4-6 scales for detection which reduces the
execution time drastically. Even with this sparse scale space
the detections are acceptable. The scales are chosen based on
statistical information gathered from the training set. For each
scale we train a separate classifier. By evaluating our method
on two datasets we have shown that the method is competitive.

Future work will focus on generating candidate regions
based on methods that rely on segmentation (such as Object-
ness and Selective Search). Although there are many existing
approaches with high recall none of them can provide object
locations within milliseconds which is a necessity for both fast

PC and Android applications. We will also study the effect of
a sparse scale space on the detection accuracy and how many
scales are really necessary for detection. Further optimizations
will be performed on the Android version especially in the
feature extraction part.

ACKNOWLEDGMENT

This research was funded by the CoMoSeF project, code
PN II PCCA PN-II-PT-PCCA-2011-3.2-0742 from 20.09.2012
(2012-2016).

REFERENCES

[1] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach.
Intell, vol. 34, no. 4, pp. 743–761, 2012.

[2] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection:
Survey and experiments,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 31, no. 12, pp. 2179–2195, Dec. 2009.

[3] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, “Survey of
pedestrian detection for advanced driver assistance systems,” IEEE
Trans. Pattern Anal. Mach. Intell, vol. 32, no. 7, pp. 1239–1258, 2010.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005, pp. I: 886–893.

[5] D. G. Lowe, “Object recognition from local scale-invariant features,”
in ICCV, 1999, pp. 1150–1157.

[6] B. Fulkerson, A. Vedaldi, and S. Soatto, “Localizing objects with smart
dictionaries,” in ECCV, 2008, pp. I: 179–192.

[7] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented
histograms of flow and appearance,” in ECCV, 2006, pp. II: 428–441.

[8] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and
insights for pedestrian detection,” in CVPR. IEEE, 2010, pp. 1030–
1037.

[9] T. Watanabe, S. Ito, and K. Yokoi, “Co-occurrence histograms of
oriented gradients for pedestrian detection,” in PSIVT, 2009, pp. 37–47.

[10] P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning
shapelet features,” in CVPR, 2007, pp. 1–8.

[11] Y. Cao, S. Pranata, and H. Nishimura, “Local binary pattern features
for pedestrian detection at night/dark environment,” in ICIP, B. Macq
and P. Schelkens, Eds. IEEE, 2011, pp. 2053–2056.

[12] Q. A. Zhu, M. C. Yeh, K. T. Cheng, and S. Avidan, “Fast human
detection using a cascade of histograms of oriented gradients,” in CVPR,
2006, pp. II: 1491–1498.

[13] P. Dollar, Z. W. Tu, P. Perona, and S. Belongie, “Integral channel
features,” in BMVC, 2009.

[14] F. M. Porikli, “Integral histogram: A fast way to extract histograms in
cartesian spaces,” in CVPR, 2005, pp. I: 829–836.

[15] D. M. Gavrila and S. Munder, “Multi-cue pedestrian detection and
tracking from a moving vehicle,” International Journal of Computer
Vision, vol. 73, no. 1, pp. 41–59, Jun. 2007.

[16] J. J. Lim, C. L. Zitnick, and P. Dollár, “Sketch tokens: A learned mid-
level representation for contour and object detection,” in CVPR. IEEE,
2013, pp. 3158–3165.

[17] J. Friedman, T. Hastie, and R. Tibshirani, “Special invited paper.
additive logistic regression: A statistical view of boosting,” The Annals
of Statistics, vol. 28, no. 2, pp. 337–374, 2000.

[18] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,”
in CVPR, 2005, pp. II: 236–243.

[19] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” International Journal of Computer Vision,
vol. 63, no. 2, pp. 153–161, Jul. 2005.

[20] P. Dollár, S. Belongie, and P. Perona, “The fastest pedestrian detector
in the west,” in BMVC, F. Labrosse, R. Zwiggelaar, Y. Liu, and
B. Tiddeman, Eds. British Machine Vision Association, 2010, pp.
1–11.

[21] R. Benenson, M. Mathias, R. Timofte, and L. J. V. Gool, “Pedestrian
detection at 100 frames per second,” in CVPR. IEEE, 2012, pp. 2903–
2910.

[22] R. Benenson, M. Mathias, T. Tuytelaars, and L. J. V. Gool, “Seeking
the strongest rigid detector,” in CVPR. IEEE, 2013, pp. 3666–3673.

[23] S. Maji, A. C. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in CVPR, 2008, pp. 1–8.

[24] P. Dollár, R. Appel, and W. Kienzle, “Crosstalk cascades for frame-rate
pedestrian detection,” in ECCV, 2012.

[25] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids
for object detection,” PAMI, 2014.

[26] T. Machida and T. Naito, “GPU & CPU cooperative accelerated
pedestrian and vehicle detection,” in ICCV Workshops. IEEE, 2011,
pp. 506–513.

[27] C. Wojek, G. Dorkó, A. Schulz, and B. Schiele, “Sliding-windows
for rapid object class localization: A parallel technique,” in Pattern
Recognition (DAGM), May 2008.

[28] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-
based real-time pedestrian detection on high-resolution images,” in
CVPR Workshops. IEEE, 2013, pp. 629–635.

[29] A. Ess, K. Schindler, B. Leibe, and L. van Gool, “Robust multi-person
tracking from moving platforms,” in Logic and Probability for Scene
Interpretation, ser. Dagstuhl Seminar Proceedings, A. G. Cohn, D. C.
Hogg, R. Möller, and B. Neumann, Eds., no. 08091. Dagstuhl, Ger-
many: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
2008.

[30] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Trans. Pattern Anal. Mach. Intell, vol. 32, no. 9, pp. 1627–1645,
2010.

[31] R. Varga and S. Nedevschi, “Gradient-based region of interest selection
for faster pedestrian detection,” in Intelligent Computer Communication
and Processing. IEEE, 2013, pp. 1–2.

[32] P. Dollár, “Piotr’s Image and Video Matlab Toolbox (PMT),” http://
vision.ucsd.edu/∼pdollar/toolbox/doc/index.html.

[33] P. A. Viola, J. C. Platt, and C. Zhang, “Multiple instance boosting for
object detection,” in NIPS, 2005.

[34] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
A benchmark,” in CVPR, 2009, pp. 304–311.

	List of Tables
	List of Figures
	Chapter Introduction
	Definitions and context
	Motivation
	Thesis objective
	Thesis structure
	Acknowledgements

	Chapter Related works
	Object detection overview
	Relevant feature descriptors
	Color descriptors and color spaces
	Texture descriptors
	Shape descriptors
	Visual descriptors for object detection

	Classifiers for object detection
	Decision stumps
	Decision trees
	K-nearest neighbor classifiers
	Bayes classifiers
	Linear classifiers
	Artificial Neural Networks
	Support Vector Machines
	Boosted classifiers
	Classifier evaluation measures
	Classifier evaluation methods

	Region of interest selection and candidate generation methods
	Object detection methods
	Pallet detection methods
	Pedestrian detection methods
	Stereo matching and reconstruction

	Chapter Proposed features and classifiers for object detection
	Normalized Pair Differences and other features
	Normalized Pair Differences
	Sparse Local Binary Pattern Histogram
	Edge density features
	Experimental Results
	Conclusions

	Boosted ensemble classifiers with decision trees as weak learners
	Decision tree algorithms
	Ensemble classifier algorithms
	Experimental results
	Conclusions

	Chapter Proposed candidate generation methods for fast object detection
	Pedestrian candidate generation based on position
	Pedestrian candidate generation based on gradient
	Bottom-up constructive candidate generation for pallets
	Incorporating stereo information for candidate generation
	Experimental results
	Conclusions

	Chapter Contributions to object detection and classification methods
	Automatic image annotation by measuring compactness
	Compactness definition and interpretation
	Label transfer for image annotation
	Algorithm overview
	Experimental results
	Conclusions

	Detection methods for automated logistics operations
	Pallet detection and position estimation
	Methods for treating unloading operations
	Experimental results
	Conclusions

	Pedestrian detection methods
	Pedestrian detection using reduced number of scales
	Pedestrian detection without image resize operations
	Lazy Feature Extraction (LFE)
	Multimodal Multiresolution Filtered Channels (MM-MRFC)
	Conclusions

	Chapter Conclusions
	Bibliography
	Appendix Published Papers
	In ISI rated international journals
	In ISI indexed conference proceedings
	In IEEE Xplore conference proceedings
	Independent citations

	Appendix Listings of three papers

